网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

2、一个函数在一点可导与在一点可微是否等价?

A.等价

B.可微推不出可导

C.可导推不出可微

D.(无)


参考答案和解析
可导推不出可微
更多 “2、一个函数在一点可导与在一点可微是否等价?A.等价B.可微推不出可导C.可导推不出可微D.(无)” 相关考题
考题 函数在一点的导数就是在一点的微分。() 此题为判断题(对,错)。

考题 设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

考题 区间[a,b]上的三次样条插值函数是() A、在[a,b]上2阶可导,节点的函数值已知,子区间上为3次多项式B、在区间[a,b]上连续的函数C、在区间[a,b]上每点可微的函数D、在每个子区间上可微的多项式

考题 可导与可微的关系是:可导必可微,可微必可导。() 此题为判断题(对,错)。

考题 若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。

考题 已知函数f(x)在x=1处可导,则f'(1)等于: A. 2 B. 1

考题 设y=f(x)是(a, b)内的可导函数,X,X+ΔX是(a, b)内的任意两点,则: (A) Δy= f‘ (x)Ax (B)在x,x+Ax之间恰好有一点ξ,使Δy=f'(ξ)Ax (C)在x, x+Ax之间至少有一点ξ,使Δy=f'(ξ)Ax (D)对于x,x+ax之间任意一点ξ,使Δy=f'(ξ)Ax

考题 下列函数中在x=0处可导的是

考题 设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则: A. △y=f’(x)△x B.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△x C.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△x D.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x

考题 设函数,已知函数f(x)在x=0处可微,求

考题 下列函数在χ=0处可导的是( )。

考题 罗尔定理:设函数(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)(a)=(b),则在(a,b)内至少存在一点ξ,使得,′(ξ)=0。证明这个定理并说明其几何意义。

考题 下列函数在x=0处可导的是( )。

考题 对于多元函数,以下叙述正确的是()。A、连续一定偏导存在B、偏导存在一定连续C、偏导存在一定可微D、可微一定偏导存在

考题 函数在一点处的导数就是这点处的微分。

考题 二阶可微函数若是凸的,则()。A、其导函数小于0B、其二阶导函数大于0C、其导函数大于0D、其二阶导函数小于0

考题 可微函数若是单调增的,则()。A、函数大于0B、其二阶导函数大于0C、其导函数大于0D、其二阶导函数小于0

考题 函数在一点处的左右极限都存在,则函数在这一点的极限存在。

考题 若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A、解析B、可导C、可分D、可积

考题 设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

考题 单选题设函数在(a,b)内连续,则在(a,b)内()。A f(x)必有界B f(x)必可导C f(x)必存在原函数D D.必存在一点ξ∈(a,,使f(ξ)=0

考题 单选题若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A 解析B 可导C 可分D 可积

考题 问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

考题 单选题对于多元函数,以下叙述正确的是()。A 连续一定偏导存在B 偏导存在一定连续C 偏导存在一定可微D 可微一定偏导存在

考题 单选题二阶可微函数若是凸的,则()。A 其导函数小于0B 其二阶导函数大于0C 其导函数大于0D 其二阶导函数小于0

考题 单选题设函数f(x)=丨x丨,则函数在点x=0处()A 连续且可导B 连续且可微C 连续不可导D 不可连续不可微

考题 单选题可微函数若是单调增的,则()。A 函数大于0B 其二阶导函数大于0C 其导函数大于0D 其二阶导函数小于0

考题 判断题函数在一点处的左右极限都存在,则函数在这一点的极限存在。A 对B 错