网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

如果0型系统开环传递函数在s右半平面的极点个数为2,当系统频率w=0-∞变化时,开环奈氏曲线逆时针包围GH平面中(-1,j0)点的圈数为1,则此时闭环特征根的个数为()

A.0

B.1

C.2

D.3


参考答案和解析
A
更多 “如果0型系统开环传递函数在s右半平面的极点个数为2,当系统频率w=0-∞变化时,开环奈氏曲线逆时针包围GH平面中(-1,j0)点的圈数为1,则此时闭环特征根的个数为()A.0B.1C.2D.3” 相关考题
考题 一闭环系统的开环传递函数为G(s)=4/(s+4),则该系统为() A、0型系统,开环放大系数K为4B、I型系统,开环放大系数K为4C、I型系统,开环放大系数K为1D、0型系统,开环放大系数K为1

考题 一闭环系统的开环传递函数为G(s)=8(s+3)/[s(2s+3)(s+2)],则该系统为() A、0型系统,开环增益为8B、I型系统,开环增益为8C、I型系统,开环增益为4D、0型系统,开环增益为4

考题 若闭环系统的特征式与开环传递函数的关系为F(s)=1+G(s)H(s),则()。 A、F(s)的零点就是系统闭环零点B、F(s)的零点就是系统开环极点C、F(s)的极点就是系统开环极点D、F(s)的极点就是系统闭环极点

考题 奈魁斯特围线中所包围系统开环传递函数G(s)的极点数为3个,系统闭环传递函数的极点数为2个,则映射到G(s)复平面上的奈魁斯特曲线将() A、逆时针围绕点(0,j0)1圈B、顺时针围绕点(0,j0)1圈C、逆时针围绕点(-1,j0)1圈D、顺时针围绕点(-1,j0)1圈

考题 当ω从0到+∞变化时,开环传递函数的Nyquist轨迹逆时针包围点(-1,j0)的圈数N与其的右极点数P具有什么关系时,则闭环系统稳定。 A、N=-P/2B、N=P/2C、N=-PD、N=P

考题 系统特征方程为D(s)=s3+2s2+s+2=0,则该系统( )。A.右半S平面有1个闭环极点B.稳定C.右半S平面有2个闭环极点D.临界稳定A.B.C.D.

考题 开环奈奎斯特轨迹离点(-1,j0)越近,则其闭环系统的稳定性越高。()

考题 利用乃奎斯特稳定性判据判断系统的稳定性时,z=p-N中的z表示()。A.闭环特征方程在s右半平面根的个数B.闭环特征方程在s左半平面根的个数C.特征函数在右半平面的零点数D.特征函数在左半平面的零点数

考题 若开环系统稳定要使闭环系统稳定的充分必要条件是:系统开环幅相频率特 性曲线不包围( )点。A. (1,j1)B. (1,j0)C. (-1,j1)D. (-1,j0)

考题 如果系统的开环传递函数在复平面s的右半面既没有极点,也没有零点,则称该传递函数为()。 A.最小相位传递函数B.积分环节传递函数C.惯性环节传递函数D.微分环节传递函数

考题 如果系统在开环状态下是稳定的,闭环系统稳定稳定的充要条件是:它的开环极坐标图(). A.不包围(-1,j0)点包围(-1,j0)点B.不包围(1,j0)点C.包围(1,j0)点

考题 所谓最小相位系统是指(). A.系统闭环传递函数的极点均在S平面左半平面B.系统开环传递函数的所有零点和极点均在S平面左半平面C.系统闭环传递函数的所有零点和极点均在S平面右半平面D.系统开环传递函数的所有零点和极点均在S平面右半平面

考题 当ω从0到+∞变化时,开环传递函数的Nyquist轨迹逆时针包围点()的圈数N与其的右极点数P具有N=P/2关系时,则闭环系统稳定。() A.(0,j1)B.(0,-j1)C.(-1,j0)D.(1,j0)

考题 最小相角系统闭环稳定的充要条件是 ( ) A奈奎斯特曲线不包围(-1,j0)点B奈奎斯特曲线包围(-1,j0)点C奈奎斯特曲线顺时针包围(-1,j0)点D奈奎斯特-1,j0)点

考题 利用奶奎斯特稳定性判据判断系统的稳定性时,Z=P-N中的Z表示意义为()。A、开环传递函数零点在S左半平面的个数B、开环传递函数零点在S右半平面的个数C、闭环传递函数零点在S右半平面的个数D、闭环特征方程的根在S右半平面的个数

考题 根据Nyquist稳定性判据的描述,如果开环是不稳定的,且有P个不稳定极点,那么闭环稳定的条件是:当w由-∞到+∞时,Wk(jw)的轨迹应该逆时针绕(-1,j0)点P圈。

考题 闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S平面右半平面的()A、闭环极点数B、闭环零点数C、开环极点数D、开环零点数

考题 关于奈氏判据及其辅助函数F(s)=1+G(s)H(s),错误的说法是()A、F(s)的零点就是开环传递函数的极点B、F(s)的极点就是开环传递函数的极点C、F(s)的零点数与极点数相同D、F(s)的零点就是闭环传递函数的极点

考题 以下关于控制系统根轨迹法描述正确的是:()A、根轨迹法是求解闭环系统特征方程根的一种图式法B、在已知系统开环零、极点在s平面分布的情况下,绘制系统闭环极点在s平面随某一参数变化时的运动轨迹C、绘制根轨迹时,凡是满足幅值条件的点都在根轨迹上D、根轨迹起始于系统开环极点终止于系统开环零点

考题 根轨迹是指开环系统某个参数由0变化到∞,()在s平面上移动的轨迹。A、开环零点B、开环极点C、闭环零点D、闭环极点

考题 将下列判断中正确者的编号填入题后括号()。A、如果系统开环稳定,则闭环一定稳定B、如果系统闭环稳定,则开环一定稳定C、如果系统开环稳定,则闭环稳定的条件是闭环奈氏曲线不包围(-1,j0)点D、如果系统开环稳定,则闭环稳定的条件是开环奈氏曲线不包围(-1,j0)点

考题 系统开环传递函数G(s),所示在右半平面上的极点数为P,则闭环系统稳定的充分必要条件是:在开环对数幅频特性L(w)0dB的所有频段内,当频率增时对数相频特性对-180度相位线的正、负穿越次数之差为P/2。

考题 如果系统的开环传递函数在复平面s的右半面既没有极点,也没有零点,则称该传递函数为()。A、最小相位传递函数B、积分环节传递函数C、惯性环节传递函数D、微分环节传递函数

考题 若某负反馈控制系统的开环传递函数为5÷S(S+1),则该系统的闭环特征方程为()。A、S(S+1)=0B、S(S+1)+5=0C、与是否为单位反馈系统有关

考题 如果已知一系统G(s),p是开环极点在s右半平面的个数,当 从-∞变化到∞时,下列关于该系统奈奎斯特(Nyquist)曲线描述正确的是:()A、奈奎斯特曲线不包围(-1,j0)点,且p=0,则闭环系统稳定。B、奈奎斯特曲线按逆时针方向包围(-1,j0)点p周,则闭环系统稳定。C、奈奎斯特曲线按顺时针方向包围(-1,j0)点p周,则闭环系统稳定。D、奈奎斯特曲线按顺时针方向包围(-1,j0)点p周,无论p为何值,闭环系统不稳定。

考题 单选题闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S平面右半平面的()A 闭环极点数B 闭环零点数C 开环极点数D 开环零点数

考题 判断题根据Nyquist稳定性判据的描述,如果开环是不稳定的,且有P个不稳定极点,那么闭环稳定的条件是:当w由-∞到+∞时,Wk(jw)的轨迹应该逆时针绕(-1,j0)点P圈。A 对B 错

考题 单选题利用奶奎斯特稳定性判据判断系统的稳定性时,Z=P-N中的Z表示意义为()。A 开环传递函数零点在S左半平面的个数B 开环传递函数零点在S右半平面的个数C 闭环传递函数零点在S右半平面的个数D 闭环特征方程的根在S右半平面的个数