网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

若线性规划原问题和对偶问题有最优解,下面说法正确的是:

A.线性规划原问题最优解等于对偶问题最优解

B.线性规划原问题最优解小于对偶问题最优解

C.线性规划原问题最优解与对偶问题的对偶价格有关

D.线性规划原问题最优解大于对偶问题最优解


参考答案和解析
线性规划原问题最优解与对偶问题的对偶价格有关
更多 “若线性规划原问题和对偶问题有最优解,下面说法正确的是:A.线性规划原问题最优解等于对偶问题最优解B.线性规划原问题最优解小于对偶问题最优解C.线性规划原问题最优解与对偶问题的对偶价格有关D.线性规划原问题最优解大于对偶问题最优解” 相关考题
考题 若线性规划问题有最优解,则要么最优解唯一,要么有无穷多最优解。()

考题 设M是线性规划问题,N是其对偶问题,则()不正确。 A.M有最优解,N不一定有最优解B.若M和N都有最优解,则二者最优值肯定相等C.若M无可行解,则N无有界最优解D.N的对偶问题为M

考题 如果线性规划问题的原问题有多重最优解,那么它的对偶问题也一定有多重最优解() 此题为判断题(对,错)。

考题 原问题有多重最优解,则对偶问题有多重最优解() 此题为判断题(对,错)。

考题 下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

考题 互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解

考题 原问题无最优解,则对偶问题无可行解( )

考题 对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确

考题 一个线性规划问题(P)与它的对偶问题(D)有关系()。A、(P)有可行解则(D)有最优解B、(P)、(D)均有可行解则都有最优解C、(P)可行(D)无解,则(P)无有限最优解D、(P)(D)互为对偶

考题 关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

考题 原问题与对偶问题都有可行解,则有()A、原问题有最优解,对偶问题可能没有最优解B、原问题与对偶问题可能都没有最优解C、可能一个问题有最优解,另一个问题具有无界解D、原问题与对偶问题都具有最优解

考题 一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A、(P)可行D.无解,则(P)无有限最优解B、(P)、D.均有可行解,则都有最优解C、(P)有可行解,则D.有最优解D、(P)D.互为对偶E、E.(P)有最优解,则有可行解

考题 若原问题有最优解,其对偶问题也一定有最优解。

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解

考题 线性规划问题中,下面的叙述不正确的有()。A、可行解一定存在B、可行基解必是最优解C、最优解一定存在D、最优解若存在,在可行基解中必有最优解

考题 互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

考题 若X、Y分别是线性规划的原问题和对偶问题的可行解,则有()。

考题 关于线性规划和其对偶规划的叙述中,正确的是()A、极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B、极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C、若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D、若对偶问题可行,则其目标函数无界的充要条件是原始问题可行

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A 若原问题为无界解,则对偶问题也为无界解B 若原问题无可行解,其对偶问题具有无界解或无可行解C 若原问题存在可行解,其对偶问题必存在可行解D 若原问题存在可行解,其对偶问题无可行解

考题 填空题若X、Y分别是线性规划的原问题和对偶问题的可行解,则有()。

考题 单选题原问题与对偶问题都有可行解,则有()A 原问题有最优解,对偶问题可能没有最优解B 原问题与对偶问题可能都没有最优解C 可能一个问题有最优解,另一个问题具有无界解D 原问题与对偶问题都具有最优解

考题 单选题互为对偶的两个问题存在关系()A 原问题无可行解,对偶问题也无可行解B 对偶问题有可行解,原问题也有可行解C 原问题有最优解解,对偶问题可能没有最优解D 原问题无界解,对偶问题无可行解

考题 多选题线性规划问题中,下面的叙述不正确的有()。A可行解一定存在B可行基解必是最优解C最优解一定存在D最优解若存在,在可行基解中必有最优解

考题 判断题若原问题有最优解,其对偶问题也一定有最优解。A 对B 错

考题 单选题对于线性规划问题,下列说法正确的是()A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D 上述说法都正确

考题 多选题一个线性规划问题(P)与它的对偶问题(D)有关系()。A(P)有可行解则(D)有最优解B(P)、(D)均有可行解则都有最优解C(P)可行(D)无解,则(P)无有限最优解D(P)(D)互为对偶