网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

一元一次方程3x-6=0的解是__________.


参考答案和解析
正确
更多 “一元一次方程3x-6=0的解是__________.” 相关考题
考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 在不等式ax+b>0中,a,b是常数,且a≠0。当______时,不等式的解集是x>-b/a;当______时,不等式的解集是x<- b/a。

考题 在0、-4、3、-3、1/5、-5、4、-10中,______是方程x+4=0的解;______是不等式x+4≥0的解;______是不等式x+4<0的解。)比较a与2a的大小。

考题 设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系 B.k1ξ1+k1ξ2是Ax=0的通解 C.k1ξ1+ξ2是Ax=0的通解 D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

考题 设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:   (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)   (2)若r(A)≥r(B),则AX=0的解都是BX=0的解   (3)若AX=0与BX=0同解,则r(A)-r(B)   (4)若r(A)=r(B),则AX=0与BX=0同解   以上命题正确的是().A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是A.① ② B.① ③ C.② ④ D.③ ④

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解 A.① ② B.① ③ C.② ④ D.③ ④

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解 B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解 C.若方程组AX=b无解,则方程组AX=0一定有非零解 D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

考题 设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.

考题 设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解

考题 满足方程3yy′=1,y|x=0=0的解是(  )。

考题 设A是m×n矩阵,如果m A.Ax=b必有无穷多解 B.Ax=b必有唯一解 C.Ax=0必有非零解 D.Ax=0必有唯一解

考题 关于线性规划模型的可行解和基解,叙述正确的是()A、可行解必是基解B、基解必是可行解C、可行解必然是非基变量均为0,基变量均非负D、非基变量均为0,得到的解都是基解

考题 设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

考题 线性规划问题中基可行解与基解的区别在于()A、基解都不是可行解B、基可行解变量Xj≥0C、基解是凸集的边界D、基解变量Xj≤0

考题 方程ax+b=0(a≠0)的解为()。

考题 使用Exce l2010中的“单变量求解”可对一元一次方程求解。

考题 下面哪个不是解决问题的算法()。A、从济南到北京旅游,先坐火车,再坐飞机抵达B、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C、方程x^2-1=0有两个实根D、求1+2+3+4+5的值,先计算1+2=3,再由3+3=6,6+4=10,10+5=15,最终结果为15

考题 单选题线性规划问题中基可行解与基解的区别在于()A 基解都不是可行解B 基可行解变量Xj≥0C 基解是凸集的边界D 基解变量Xj≤0

考题 问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

考题 单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是(  )。A 若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B 若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解

考题 单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).A A*X=0的解均是AX=0的解B AX=0的解均是A*X=O的解C AX=0与A*X=0无非零公共解D AX=0与A*X=O仅有2个非零公共解

考题 单选题传递函数G(s)的零点是()A G(s)=0的解B G(s)=∞的解C G(s)>0的不等式解D G(s)<0的不等式解

考题 单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A ①②B ①③C ②④D ③④

考题 单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。A A*X(→)=0(→)的解均是AX(→)=0(→)的解B AX(→)=0(→)的解均是A*X(→)=0(→)的解C AX(→)=0(→)与A*X(→)=0(→)无非零公共解D AX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解

考题 单选题已知下列方程:(2)3x=1;(4)x3-4x=7;(5)x=0;(6)x+2y=3.其中一元一次方程的个数是(  ).A 2B 3C 4D 5

考题 单选题关于线性规划模型的可行解和基解,叙述正确的是()A 可行解必是基解B 基解必是可行解C 可行解必然是非基变量均为0,基变量均非负D 非基变量均为0,得到的解都是基解