网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

齐次线性方程组AX=0有唯一零解当且仅当,|A|不等于0,或者A的秩等于未知元的个数n


参考答案和解析
充要条件
更多 “齐次线性方程组AX=0有唯一零解当且仅当,|A|不等于0,或者A的秩等于未知元的个数n” 相关考题
考题 设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

考题 当()时,线性方程组AX=b(b≠0)有唯一解,其中n是未知量的个数。

考题 没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。 A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵

考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

考题 若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是: A.AX=0仅有零解 B.AX=0必有非零解 C.AX=0—定无解 D.AX=b必有无穷多解

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是A.① ② B.① ③ C.② ④ D.③ ④

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解 A.① ② B.① ③ C.② ④ D.③ ④

考题 非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解. B.r=n时,方程组Ax=b有唯一解. C.m=n时,方程组Ax=b有唯一解. D.r

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:   ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);   ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;   ③若Ax=0与Bx=0同解,则秩(A)=秩(B);   ④若秩(A)=秩(B)则Ax=0与Bx=0同解;   以上命题中正确的是A.①②. B.①③. C.②④. D.③④,

考题 设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=n B.r<n C.r≥n D.r>n

考题 非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。

考题 非齐线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则( )。A 当r=m时,方程组AX=b有解 B 当r=n时,方程组AX=b有惟一解 C 当m=n时,方程组AX=b有惟一解 D 当r<n时,方程组AX=b有无穷多解

考题 若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是: A.AX=0仅有零解 B.AX=0必有非零解 C.AX=0 —定无解 D.AX=b必有无穷多解

考题 若非齐次线性方程组Ax=b中方程个数少于未知量个数,那么( )。 A. Ax = b必有无穷多解 B.Ax=0必有非零解C.Ax=0仅有零解 D. Ax= 0一定无解

考题 非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( ).A.r=m时,方程组AX=b有解 B.r=n时,方程组AX=b有唯一解 C.m=m时,方程组AX=b有唯一解 D.r<n时,方程组AX=b有无穷多解

考题 若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。A、Ax=0仅有零解B、Ax=0必有非零解C、Ax=0一定无解D、Ax=b必有无穷多解

考题 问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

考题 单选题没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。A A的秩等于nB A的秩不等于0C A的行列式值不等于0D A存在逆矩阵

考题 单选题设矩阵Am×n的秩r(A)=m A A的任意m个列向量必线性无关B A的任一个m阶子式不等于0C 非齐次线性方程组AX=b一定有无穷多组解D A通过行初等变换可化为(Em,0)

考题 单选题非齐次线性方程组AX(→)=b(→)中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则(  )。A r=m时,方程组AX(→)=b(→)有解B r=n时,方程组AX(→)=b(→)有唯一解C m=n时,方程组AX(→)=b(→)有唯一解D r<n时,方程组AX(→)=b(→)有无穷多解