网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。
A

α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性相关

B

α()1α()2,…,α()s线性相关,则Aα()1,Aα()2,…,Aα()s线性无关

C

α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性相关

D

α()1α()2,…,α()s线性无关,则Aα()1,Aα()2,…,Aα()s线性无关


参考答案

参考解析
解析:
设有数k1,k2,…,ks,使k1α()1+k2α()2+…+ksα()s0(),则有A(k1α()1+k2α()2+…+ksα()s)=k1Aα()1+k2Aα()2+…+ksAα()s0()。因α()1α()2,…,α()s线性相关,故k1,k2,…,ks不全为0,知Aα()1,Aα()2,…,Aα()s线性相关。
更多 “单选题设α(→)1,α(→)2,…,α(→)s均为n维列向量,A是m×n矩阵,下列选项正确的是(  )。A 若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关B 若α(→)1,α(→)2,…,α(→)s线性相关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关C 若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性相关D 若α(→)1,α(→)2,…,α(→)s线性无关,则Aα(→)1,Aα(→)2,…,Aα(→)s线性无关” 相关考题
考题 设A是m×n矩阵,且m>n,下列命题正确的是().

考题 若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

考题 设A是m×n非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是: A. A的行向量组线性相关 B. A的列向量组线性相关 C. B的行向量组线性相关 D. r(A)+r(B)≤n

考题 设A是n阶方阵,a是n维列向量,下列运算无意义的是( ).A. B. C.αA D.Aα

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

考题 设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 设A是一个m×n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。

考题 设A和B均为n阶矩阵(n>1),m是大于1的整数,则必有(  )。

考题 设n行n列的下三角矩阵A已压缩到一维数组S[1....n*(n+1)/2]中,若按行序为主存储,则A[i][j]对应的S中的存储位置是()。

考题 设A是n阶方阵,α是n维列向量,下列运算无意义的是().A、αTAαB、ααTC、αAD、Aα

考题 填空题设n行n列的下三角矩阵A已压缩到一维数组S[1....n*(n+1)/2]中,若按行序为主存储,则A[i][j]对应的S中的存储位置是()。

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设A是m×n的非零矩阵,B是m×1非零矩阵,满足AB=0,以下选项中不一定成立的是:()A A的行向量组线性相关B A的列向量组线性相关C B的行向量组线性相关D r(A)+r(B)≤n

考题 单选题设A是n阶方阵,α是n维列向量,下列运算无意义的是().A αTAαB ααTC αAD Aα

考题 问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

考题 单选题下列说法不正确的是(  )。A s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后的向量组仍然线性无关B s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则每个向量增加k维分量后得到的向量组仍然线性无关C s个n维向量α(→)1,α(→)2,…,α(→)s线性相关,则加入k个n维向量β(→)1,β(→)2,…,β(→)k后得到的向量组仍然线性相关D s个n维向量α(→)1,α(→)2,…,α(→)s线性无关,则减少一个向量后得到的向量组仍然线性无关

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A 4B 2C -1D 1

考题 单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A -1B 1C -2D 2

考题 单选题设A是m×n矩阵,A以列分块,记A=(α(→)1,α(→)2,…,α(→)n),在A中划去第i列得到的矩阵记为B,B=(α(→)1,…,α(→)i-1,α(→)i+1,…,α(→)n),则r(A)=r(B)是α(→)i可以由B的列向量线性表示的(  )。A 充分条件B 必要条件C 充要条件D 既不充分又不必要条件