网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
函数y=C1ex+C2e-2x+xex满足的一个微分方程是( )。
A
y″-y′-2y=3xex
B
y″-y′-2y=3ex
C
y″+y′-2y=3xex
D
y″+y′-2y=3ex
参考答案
参考解析
解析:
由函数y=C1ex+C2e-2x+xex结合解的结构可知,y1=ex及y2=e-2x是所求非齐次方程对应齐次方程的解,y3=xex是所求非齐次方程的一个特解。故对应特征方程的根为r1=1,r2=-2,特征方程为(r-1)(r+2)=r2+r-2=0。则齐次方程为y″+y′-2y=0。假设所求方程为y″+y′-2y=f(x),将y3=xex代入得f(x)=3ex。则所求方程为y″+y′-2y=3ex。
由函数y=C1ex+C2e-2x+xex结合解的结构可知,y1=ex及y2=e-2x是所求非齐次方程对应齐次方程的解,y3=xex是所求非齐次方程的一个特解。故对应特征方程的根为r1=1,r2=-2,特征方程为(r-1)(r+2)=r2+r-2=0。则齐次方程为y″+y′-2y=0。假设所求方程为y″+y′-2y=f(x),将y3=xex代入得f(x)=3ex。则所求方程为y″+y′-2y=3ex。
更多 “单选题函数y=C1ex+C2e-2x+xex满足的一个微分方程是( )。A y″-y′-2y=3xexB y″-y′-2y=3exC y″+y′-2y=3xexD y″+y′-2y=3ex” 相关考题
考题
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:
A. y''-2y'-3y=0
B. y''+2y'-3y=0
C. y''-3y'+2y=0
D. y''+2y'+y=0
考题
具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?A、y″+y′-2y=2+exB、y″-y′-2y=4x+2exC、y″-2y′+y=x+exD、y″-2y′=4+2ex
考题
单选题具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是( )。A
y‴-y″-y′+y=0B
y‴+y″-y′-y=0C
y‴-6y″+11y′-6y=0D
y‴-2y″-y′+2y=0
考题
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″-2y′-3y=0
考题
单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″+2y′+y=0
考题
单选题具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?A
y″+y′-2y=2+exB
y″-y′-2y=4x+2exC
y″-2y′+y=x+exD
y″-2y′=4+2ex
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″-y′+y=0B
y″-2y′+2y=0C
y″-2y′=0D
y′+2y=0
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″+2y′+2y=0B
y″-2y′+2y=0C
y″-2y′-2y=0D
y″+2y′+2y=0
热门标签
最新试卷