网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
微分方程y''+2y=0的通解是( )。
参考答案
参考解析
解析:提示:这是二阶常系数线性齐次方程,特征方程为。
更多 “微分方程y''+2y=0的通解是( )。 ” 相关考题
考题
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:
A. y"-2y'-3y=0
B. y"+2y'-3y=0
C. y"-3y'+2y=0
D. y"+2y'+y=0
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″-y′+y=0B
y″-2y′+2y=0C
y″-2y′=0D
y′+2y=0
考题
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″-2y′-3y=0
考题
单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″+2y′+y=0
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″+2y′+2y=0B
y″-2y′+2y=0C
y″-2y′-2y=0D
y″+2y′+2y=0
热门标签
最新试卷