网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设P是m阶可逆矩阵,矩阵A、B是m行n列矩阵,若PA=B,则说明A与B行等价。
参考答案和解析
因为A可逆,故A可表示成若干初等矩阵的乘积,即存在初等矩阵P i (i=1,2,…,s),使得A=P 1 P 2 ·P s ,AB=P 1 P 2 …P s B,即AB是B经s次初等变换后得到的,由定理,r(AB)=r(B)。
更多 “设P是m阶可逆矩阵,矩阵A、B是m行n列矩阵,若PA=B,则说明A与B行等价。” 相关考题
考题
设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ).
A.①③
B.②④
C.②③
D.③④
考题
设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )
A.矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的行向量组与矩阵B的列向量组等价
考题
设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )
A.r(A)=r(B)=m
B.r(A)=m r(B)=n
C.r(A)=n r(B)=m
D.r(A)=r(B)=n
考题
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,分别为A,B的伴随矩阵,则( )。A.交换A的第1列与第2列得B
B.交换A的第1行与第2行得B
C.交换A的第1列与第2列得-B
D.交换A的第1行与第2行得-B
考题
设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则
A.A秩r(A)=m,秩r(B)=m
B.秩r(A)=m,秩r(B)=n
C.秩r(A)=n,秩r(B)=m
D.秩r(A)=n,秩r(B)=n
考题
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则
A.A矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的列向量组与矩阵B的列向量组等价
考题
设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m
B.r(A)=m,r(B)=n
C.r(A)=n,r(B)=m
D.r(A)=n,r(B)=n
考题
单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( )。A
r(A)=m,r(B)=mB
r(A)=m,r(B)=nC
r(A)=n,r(B)=mD
r(A)=n,r(B)=n
考题
单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( )。A
r>r1B
r<rlC
r=rlD
r与r1的关系依C而定
热门标签
最新试卷