网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,
若矩阵Q=(a1,a2,a3),则Q-1AQ=


参考答案

参考解析
解析:提示:当P-1AP=Λ时,P=(a1,a2,a3)中a1,a2,a3的排列满足对应关系,a1对应λ1,a2对应λ2,a3对应λ3,可知a1对应特征值λ1=1,a2对应特征值λ2=2,a3对应特征值λ3=0,由此可
更多 “设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵, 若矩阵Q=(a1,a2,a3),则Q-1AQ= ” 相关考题
考题 设A为n阶可逆矩阵,则下面各式恒正确的是( ).

考题 设A,B为同阶可逆矩阵,则( )。A.AB=BA B. C. D.存在可逆矩阵P和Q,使PAQ=B

考题 设A,B为n阶可逆矩阵,则().

考题 设A是3阶可逆矩阵,交换A的1,2行得B,则

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设3阶矩阵A,B满足AB=A+B.证明A-E可逆.

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆 B.E-A不可逆,E+A可逆 C.E-A可逆,E+A可逆 D.E-A可逆,E+A不可逆

考题 设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值A的特征向量是: A. Pa B. P-1a C.PTa D.(P-1)Ta

考题 设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A为3阶矩阵.P为3阶可逆矩阵,且 A. B. C. D.

考题 设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆 B.E—A不可逆。E+A可逆 C.E—A可逆。E+A可逆 D.E—A可逆。E十A不可逆

考题 设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A 等价B 相似C 合同D 正交

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα