网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.
参考答案
参考解析
解析:
更多 “设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.” 相关考题
考题
设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )
A.r(A)=r(B)=m
B.r(A)=m r(B)=n
C.r(A)=n r(B)=m
D.r(A)=r(B)=n
考题
设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同
B.矩阵A的特征值都是实数
C.存在可逆矩阵P,使P^-1AP为对角阵
D.存在正交阵Q,使Q^TAQ为对角阵
考题
单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( )。A
r(A)=m,r(B)=mB
r(A)=m,r(B)=nC
r(A)=n,r(B)=mD
r(A)=n,r(B)=n
考题
问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明: (1)A2=A的充要条件是α(→)Tα(→)=1; (2)当α(→)Tα(→)=1时,A是不可逆矩阵。
考题
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A
4B
2C
-1D
1
考题
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A
-1B
1C
-2D
2
考题
单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A
-A*B
A*C
(-1)nA*D
(-1)n-1A*
热门标签
最新试卷