网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A是m×n矩阵,秩(A)=r<min(m,n),则A中必( )《》( )

A.至少有-r阶子式不为零,没有不等于0的r+1阶子式
B.有等于0的r阶子式,所有r+l阶子式全为0
C.有等于0的r阶子式,没有不等于0的r+1阶子式
D.有等于0的r-1阶子式,有不等于0的r阶子式

参考答案

参考解析
解析:由矩阵A的秩(A)=r<min(m,n),知所有r+1阶子式全为0,r阶子式至少有一个不为0.
更多 “设A是m×n矩阵,秩(A)=r<min(m,n),则A中必( )《》( )A.至少有-r阶子式不为零,没有不等于0的r+1阶子式 B.有等于0的r阶子式,所有r+l阶子式全为0 C.有等于0的r阶子式,没有不等于0的r+1阶子式 D.有等于0的r-1阶子式,有不等于0的r阶子式” 相关考题
考题 设A是m×n实矩阵,若r(ATA)=5,则r(A)=_________.

考题 设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解 C.若r(A)=n,则方程组AX=b一定有唯一解 D.若r(A)=m,则方程组AX=b一定有解

考题 非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解. B.r=n时,方程组Ax=b有唯一解. C.m=n时,方程组Ax=b有唯一解. D.r

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().A.r(A)=s B.r(A)=m C.r(B)=s D.r(B)=n

考题 设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( ) A.r(A)=r(B)=m B.r(A)=m r(B)=n C.r(A)=n r(B)=m D.r(A)=r(B)=n

考题 非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。

考题 下列结论中正确的是(  )。 A、 矩阵A的行秩与列秩可以不等 B、 秩为r的矩阵中,所有r阶子式均不为零 C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零 D、 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设A是m×n矩阵,秩(A)=r<min(m,n),则A中必( )A.至少有-r阶子式不为零,没有不等于0的r+1阶子式 B.有等于0的r阶子式,所有r+l阶子式全为0 C.有等于0的r阶子式,没有不等于0的r+1阶子式 D.有等于0的r-1阶子式,有不等于0的r阶子式

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m B.r(A)=m,r(B)=n C.r(A)=n,r(B)=m D.r(A)=n,r(B)=n

考题 设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r

考题 对于m个发点、n个收点的运输问题,叙述错误的是()A、该问题的系数矩阵有m×n列B、该问题的系数矩阵有m+n行C、该问题的系数矩阵的秩必为m+n-1D、该问题的最优解必唯一

考题 线性规划标准型的系数矩阵Am×n,要求()A、秩(A)=m并且mnB、秩(A)=m并且m≤nC、秩(A)=m并且m=nD、秩(A)=n并且nm

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<r1C r=r1D r与r1的关系依C而定

考题 单选题设A是m×n矩阵,B是n×m矩阵,则(  )。A 当m>n时,必有|AB|≠0B 当m>n时,必有|AB|=0C 当n>m时,必有|AB|≠0D 当n>m时,必有|AB|=0

考题 填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<rlC r=rlD r与r1的关系依C而定

考题 单选题若A为m×n矩阵,B为n×m矩阵,则(  )。A 当m>n时,ABX(→)=0(→)必有非零解B 当m>n时,AB必可逆C 当n>m时,ABX(→)=0(→)只有零解D 当n>m时,必有r(AB)<m

考题 单选题线性规划标准型的系数矩阵Am×n,要求()A 秩(A)=m并且mnB 秩(A)=m并且m≤nC 秩(A)=m并且m=nD 秩(A)=n并且nm

考题 单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。A A的任意m个列向量必线性无关B A的任一个m阶子式不等于0C 非齐次线性方程组AX(→)=b(→)一定有无穷多组解D A通过行初等变换可化为(Em,0)

考题 单选题对于m个发点、n个收点的运输问题,叙述错误的是()A 该问题的系数矩阵有m×n列B 该问题的系数矩阵有m+n行C 该问题的系数矩阵的秩必为m+n-1D 该问题的最优解必唯一

考题 单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式