网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x=0处可导的( )《》( )

A.充分必要条件
B.充分但非必要条件
C.必要但非充分条件
D.既非充分条件也非必要条件

参考答案

参考解析
解析:
更多 “设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x=0处可导的( )《》( )A.充分必要条件 B.充分但非必要条件 C.必要但非充分条件 D.既非充分条件也非必要条件” 相关考题
考题 设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值? A.x=x0是f(x)的唯一驻点 B.x=x0是f(x)的极大值点 C.f"(x)在(-∞,+∞)恒为负值 D.f"(x0)≠0

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 A.F(x)在x=0点不连续 B.F(x)在(-∞,+∞)内连续,在x=0点不可导 C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x) D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

考题 设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

考题 设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1) B.f(1)C.|f(1)|>|f(-1)| D.|f(1)|

考题 设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 已知函数,则 A.Ax=0是f(x)的第一类间断点 B.x=0是f(x)的第二类间断点 C.f(x)在x=0处连续但不可导 D.f(x)在x=0处可导

考题 设f(x)在[a,b]上可导,且f(a)f(b)小于0,

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 设f(0)=0,则f(x)在x=0可导的充要条件为( ).《》( )

考题 设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x)≠0

考题 单选题(2011)如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0:()A 可能可导也可能不可导B 不可导C 可导D 连续

考题 单选题如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0(  )。[2011年真题]A 可能可导也可能不可导B 不可导C 可导D 连续

考题 填空题设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 单选题设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x0)≠0

考题 单选题设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则(  )。A x0必是f′(x)的驻点B (-x0,-f(x0))必是y=-f(-x)的拐点C (-x0,-f(x0))必是y=-f(x)的拐点D 对∀x>x0与x<x0,y=f(x)的凸凹性相反

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。