网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x=0处可导的( )《》( )
A.充分必要条件
B.充分但非必要条件
C.必要但非充分条件
D.既非充分条件也非必要条件
B.充分但非必要条件
C.必要但非充分条件
D.既非充分条件也非必要条件
参考答案
参考解析
解析:
更多 “设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x=0处可导的( )《》( )A.充分必要条件 B.充分但非必要条件 C.必要但非充分条件 D.既非充分条件也非必要条件” 相关考题
考题
设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?
A.x=x0是f(x)的唯一驻点
B.x=x0是f(x)的极大值点
C.f"(x)在(-∞,+∞)恒为负值
D.f"(x0)≠0
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
A.F(x)在x=0点不连续
B.F(x)在(-∞,+∞)内连续,在x=0点不可导
C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)
D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x)
B.f(x)g(a)>f(a)g(x)
C.f(x)g(x)>f(b)g(b)
D.f(x)g(x)>f(a)g(a)
考题
设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()A
x=x0是f(x)的唯一驻点B
x=x0是f(x)的极大值点C
f″(x)在(-∞,+∞)恒为负值D
f″(x)≠0
考题
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A
对任意x,f′(x)>0B
对任意x,f′(x)≤0C
函数-f(-x)单调增加D
函数f(-x)单调增加
考题
单选题下列说法中正确的是( )。[2014年真题]A
若f′(x0)=0,则f(x0)必须是f(x)的极值B
若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
考题
单选题设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A
x=x0是f(x)的唯一驻点B
x=x0是f(x)的极大值点C
f″(x)在(-∞,+∞)恒为负值D
f″(x0)≠0
考题
单选题设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则( )。A
x0必是f′(x)的驻点B
(-x0,-f(x0))必是y=-f(-x)的拐点C
(-x0,-f(x0))必是y=-f(x)的拐点D
对∀x>x0与x<x0,y=f(x)的凸凹性相反
考题
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
热门标签
最新试卷