网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设f(x)在点x0处可导,(  )

A.4
B.-4
C.2
D.-2

参考答案

参考解析
解析:
因此f'(x0)=-2,可知选D.
更多 “设f(x)在点x0处可导,(  )A.4 B.-4 C.2 D.-2” 相关考题
考题 设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。() 此题为判断题(对,错)。

考题 设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值? A.x=x0是f(x)的唯一驻点 B.x=x0是f(x)的极大值点 C.f"(x)在(-∞,+∞)恒为负值 D.f"(x0)≠0

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 函数f(x)在点x=x0处连续是f(x)在点x=x0处可微的(  )。 A.充分条件 B.充要条件 C.必要条件 D.无关条件

考题 设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.

考题 如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0处()。 A.可能可导也可能不可导 B.不可导 C.可导 D.连续

考题 函数f(x)在点x=x0处连续是f(x)在x0处可导的(  )A.充分非必要条件 B.必要非充分条件 C.充分必要条件 D.既非充分条件也非必要条件

考题 设,f(x)在点x0处取得极值,则().

考题 若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

考题 若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。

考题 设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题设f(x)g(x)在x0处可导,且f(x0)=g(x0)=0,f′(x0)g′(x0)>0,f″(x0)、g″(x0)存在,则(  )A x0不是f(x)g(x)的驻点B x0是f(x)g(x)的驻点,但不是它的极值点C x0是f(x)g(x)的驻点,且是它的极小值点D x0是f(x)g(x)的驻点,且是它的极大值点

考题 单选题若f(x)在x0点可导,则|f(x)|在点x0点处(  )。A 必可导B 连续但不一定可导C 一定不可导D 不连续

考题 单选题设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x)≠0

考题 单选题(2011)如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0:()A 可能可导也可能不可导B 不可导C 可导D 连续

考题 单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A ②⇒③⇒①B ③⇒②⇒①C ③⇒④⇒①D ③⇒①⇒④

考题 判断题若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.A 对B 错

考题 单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。A 取得极大值B 取得极小值C 在x0点某邻域内单调增加D 在x0点某邻域内单调减少

考题 单选题如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0(  )。[2011年真题]A 可能可导也可能不可导B 不可导C 可导D 连续

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 单选题设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x0)≠0

考题 单选题设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则(  )。A x0必是f′(x)的驻点B (-x0,-f(x0))必是y=-f(-x)的拐点C (-x0,-f(x0))必是y=-f(x)的拐点D 对∀x>x0与x<x0,y=f(x)的凸凹性相反