2020年MBA考试《数学》章节练习(2020-09-30)

发布时间:2020-09-30


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第一章 整数、有理数、实数5道练习题,附答案解析,供您备考练习。


1、已知关于一元二次方程有两个相异实数根,则k的取值范围为()。【问题求解】

A.

B.

C.且k≠0

D.且k≠0

正确答案:C

答案解析:,得,再由,得k的取值范围为且k≠0。

2、方程有相等的实数根。()(l)a,b,c是等边三角形的三条边(2)a,b,c是等腰直角三角形的三条边【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:题干要求由条件(1),a=b=c,得由条件(2),设因此条件(1)充分,但条件(2)不充分。

3、(a,b)=30,[a,b]=18900。()(1)a=2100,b=270(2)a=140,b=810【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),a=2×2×3×5×5×7,b=2×3×3×3×5,从而知(a,b)=2×3×5=30,[a,b]=2×2×3×3×3×5×5×7=18900,即条件(1)是充分的。由条件(2),a=2×2×5×7,b=2×3×3×3×3×5,从而知(a,b)=2×5=10,[a,b]=2×2×3×3×3×3×5×7=11340,即条件(2)不充分。

4、m为偶数。()(1)设n为整数,m=n(n+1)(2)在1,2,3,…,1988这1988个自然数中每相邻两个数之间任意添加一个加号或减号,设这样组成的运算式的结果是m【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:D

答案解析:由条件(1),m=n(n+1),连续两个整数中,正好一个奇数一个偶数,从而m是偶数。条件(1)是充分的;由条件(2),在1,2,3,…,1988中有994个偶数,994个奇数,其运算式的结果一定是偶数,从而条件(2)也是充分的。

5、()。【问题求解】

A.2003

B.2004

C.2005

D.2006

E.2007

正确答案:B

答案解析:


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。