网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
若f(x)模2之后得到的f(x)在Z2上不可约,可以推出什么?()
- A、f(x)在Q上不可约
- B、f(x)在Q上可约
- C、f(x)在Q上不可约或者可约
- D、无法确定
参考答案
更多 “若f(x)模2之后得到的f(x)在Z2上不可约,可以推出什么?()A、f(x)在Q上不可约B、f(x)在Q上可约C、f(x)在Q上不可约或者可约D、无法确定” 相关考题
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值
B.f(x)在[a,b]上一致连续
C.f(x)在[a,b]上可积
D.f(x)在[a,b]上可导
考题
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值
B.f(x)在(a,b)上必一致连续
C.f(x)在(a,b)上必有
D.f(x)在(a,b)上必连续
考题
A.F(x)在x=0点不连续
B.F(x)在(-∞,+∞)内连续,在x=0点不可导
C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)
D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)
考题
若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A、只能有(p(x),f(x))=1B、只能有(p(x)C、(p(x),f(x))=1或者(p(x)D、(p(x),f(x))=1或者(p(x)
考题
若f(x)的常数项a0=±1,令g(x)=f(x+b),b=1或-1,如果g(x)在Q上不可约那么可以的什么结论?()A、g(f(x))在Q不可约B、f(x)在Q不可约C、f(g(x))在Q不可约D、f(g(x+b))在Q不可约
考题
单选题若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A
只能有(p(x),f(x))=1B
只能有(p(x)C
(p(x),f(x))=1或者(p(x)D
(p(x),f(x))=1或者(p(x)
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
单选题若f(x)的常数项a0=±1,令g(x)=f(x+b),b=1或-1,如果g(x)在Q上不可约那么可以的什么结论?()A
g(f(x))在Q不可约B
f(x)在Q不可约C
f(g(x))在Q不可约D
f(g(x+b))在Q不可约
考题
判断题若f(x)在[a,b]上可积,则f(x)在[a,b]上连续。A
对B
错
热门标签
最新试卷