网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
问答题
   设X与Y相互独立,X的概率密度为  Y的概率密度为  求:(1)E(2X-3Y+1),D(2X-3Y+1);  (2)Cov(X,Y),ρXY.

参考答案

参考解析
解析:
更多 “问答题 设X与Y相互独立,X的概率密度为  Y的概率密度为  求:(1)E(2X-3Y+1),D(2X-3Y+1);  (2)Cov(X,Y),ρXY.” 相关考题
考题 已知(X,Y)服从均匀分布,联合概率密度函数为设Z=max{X,Y}求Z的概率密度函数fz(z)

考题 设X~U(0,2),y=X^2,求y的概率密度函数.

考题 设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.

考题 设随机变量X的概率密度为      对X独立地重复观察4次,用Y表示观察值大于的次数,求Y^2的数学期望.

考题 设X~N(0,1),y=X^2,求y的概率密度函数.

考题 设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

考题 设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).

考题 设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.

考题 设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

考题 设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.   (Ⅰ)求X的概率密度fx(x);   (Ⅱ)求条件概率密度.

考题 设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

考题 设(X,Y)的联合概率密度为f(x,y)=求:(1)(X,Y)的边缘密度函数;(2)2=2X-Y的密度函数.

考题 随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为。求Z的概率密度

考题 设二维随机变量(X,Y)的概率密度为   求常数A及条件概率密度.

考题 设随机变量X的概率密度为令随机变量,   (Ⅰ)求Y的分布函数;   (Ⅱ)求概率P{X≤Y}.

考题 设随机变量X的概率密度为      对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.   (Ⅰ)求Y的概率分布;   (Ⅱ)求EY.

考题 设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;   (Ⅱ)p为何值时,X与Z不相关;   (Ⅲ)X与Z是否相互独立?

考题 设二维随机变量(X,Y)在区域上服从均匀分布,令   (Ⅰ)写出(X,Y)的概率密度;   (Ⅱ)请问U与X是否相互独立?并说明理由;   (Ⅲ)求Z=U+X的分布函数F(z).

考题 设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为   (Ⅰ)求P{Y≤EY};   (Ⅱ)求Z=X+Y的概率密度.

考题 设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π

考题 设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。A、-p(y)B、1-p(-y)C、p(-y)D、.p(y)

考题 设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。

考题 单选题设随机变量X的概率密度函数f(x)=1/[π(1+x2)],则Y=3X的概率密度函数为(  )。A 1/[π(1+y2)]B 3/[π(9+y2)]C 9/[π(9+y2)]D 27/[π(9+y2)]

考题 问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

考题 问答题设随机变量(X,Y)的概率密度为   求:(1)系数k.   (2)边缘概率密度fX(x),fY(y).   (3)P{X+Y1}.

考题 问答题 随机变量(X,Y)在矩形区域D={(x,y)|a   求:(1)联合概率密度f(x,y).    (2)边缘概率密度f X(i),f Y(y).    (3)X与Y是否独立?

考题 单选题设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为(  )。A fX(x)B fY(y)C fX(x)fY(y)D fX(x)/fY(y)