网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。
A

曲线是向上凹的

B

曲线是向上凸的

C

单调减少

D

单调增加


参考答案

参考解析
解析:
判断函数的单调性及凹凸性,需求出其导函数和二阶导数,并判断其正负号。g′(x)=[xf′(x)-f(x)]/x2,构造函数F(x)=xf′(x)-f(x),F′(x)=xf″(x)<0(题中已给出f″(x)<0),故F(x)单调减少。则F(x)<F(1)=0,故g′(x)<0,即g(x)在(1,+∞)内单调减少。
更多 “单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。A 曲线是向上凹的B 曲线是向上凸的C 单调减少D 单调增加” 相关考题
考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 如果在区间(a,b)内,函数f(x)满足f′(x)>0,f′′(x)A.单调递增且曲线为凹的 B.单调递减且曲线为凸的 C.单调递增且曲线为凸的 D.单调递减且曲线为凹的

考题 函数f(x)的导函数f'(x)的图像如右图所示,则在(-∞,+∞)内f(x)的单调递增区间是() A.(-∞,0) B.(-∞,1) C.(0,+∞) D.(1,+∞)

考题 如果在区间(a,b)内,函数,(z)满足f’(x)>0,f"(x)A.单调递增且曲线为凹的 B.单调递减且曲线为凸的 C.单调递增且曲线为凸的 D.单调递减且曲线为凹的

考题 根据f(x)的导函数f'(x)的图像,判定下列结论正确的是() A.在(-∞,-1)内,f(x)是单调增加的 B.在(-∞,0)内,f(x)是单调增加的 C.f(-1)为极大值 D.f(-1)为极小值

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 设函数f(x)可导,且f(x)f'(x)>0,则 A.Af(1)>f(-1) B.f(1)C.|f(1)|>|f(-1)| D.|f(1)|

考题 设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如图所示,则曲线y=f(x)的拐点个数为    A.A0 B.1 C.2 D.3

考题 下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数 B.设f(x)为单调函数,则f(x)也为单调函数 C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点 D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

考题 设y=f(x)在(a,6)内有二阶导数,且,f″>0,则曲线y=f(x)在(a,6)内().A.凹 B.凸 C.凹凸性不可确定 D.单调减少

考题 函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( )A.单调增加且为凹 B.单调增加且为凸 C.单调减少且为凹 D.单调减少且为凸

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )A.单调减少 B.单调增加 C.为常量 D.不为常量,也不单调

考题 已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

考题 设可导函数f(x)满足xf′(x)-f(x)>0,则()。A、单调减少B、单调增加C、是常数且为1D、是常数且为2

考题 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

考题 设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

考题 单选题当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2012年真题]A 单调减且凸的B 单调减且凹的C 单调增且凸的D 单调增且凹的

考题 单选题若f(-x)=f(x)(-∞<x<+∞),在(-∞,0)内,f′(x)>0,f″(x)<0,则在(0,+∞)内(  )。A f(x)单调增加且其图像是向上凸的B f(x)单调增加且其图像是向上凹的C f(x)单调减少且其图像是向上凸的D f(x)单调减少且其图像是向上凹的

考题 问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

考题 单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。A 取得极大值B 取得极小值C 在x0点某邻域内单调增加D 在x0点某邻域内单调减少

考题 单选题设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。A f(0)=1为f(x)的极小值B f(0)=1为f(x)的极大值C (0,f(0))为曲线y=f(x)的拐点D 由g(x)才能确定f(x)的极值或拐点

考题 单选题若f(x)在(a,b)内满足f’(x)0,则曲线y=f(x)在(a,b)内是().A 单调上升且是凹的B 单调下降且是凹的C 单调上升且是凸的D 单调下降且是凸的

考题 判断题设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。A 对B 错

考题 单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A 对任意x,f′(x)>0B 对任意x,f′(x)≤0C 函数-f(-x)单调增加D 函数f(-x)单调增加

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

考题 单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。A 奇函数B 偶函数C 周期函数D 单调函数