网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
问答题
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

参考答案

参考解析
解析: 暂无解析
更多 “问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。” 相关考题
考题 设函数f(x)的定义域是(0,1),那么f(x+1)的定义域是()。 A.(0,1)B.(-1,0)C.(1,2)D.(0,2)

考题 若函数y=f(x)是一随机变量的概率密度,则()一定成立。 A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续

考题 设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

考题 以下四个命题中,正确的是( )A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界 B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界 C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界 D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界

考题 设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

考题 设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0, 则在(- ∞ ,0)内必有: (A) f ' > 0, f '' > 0 (B) f ' 0 (C) f ' > 0, f ''

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:   (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;   (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 A. f(x)在[0,1]上至少有两个零点 B.f'(x)在[0,1]上至少有一个零点 C.f''(x)在[0,1]上至少有一个零点 D.f'(x)在[0,1]内不变号

考题 设在f(x)上连续,在[0,1]内可导,且f(0)=f(1),则:在(0,1)内曲线y=f(x)的所有切线中《》( )A.至少有一条平行于x轴 B.至少有一条平行于y轴 C.没有一条平行于x轴 D.可能有一条平行于y轴

考题 若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续 B.单调 C.可导 D.有界

考题 设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值 B.f(x)在(a,b)上必一致连续 C.f(x)在(a,b)上必有 D.f(x)在(a,b)上必连续

考题 已知函数f(x)在闭区间[a,b].上连续,且f(a).f(b)

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。 A. f'(x)>0,f''(x)>0 B. f(x) 0 C. f'(x)>0,f''(x)

考题 设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )A.单调减少 B.单调增加 C.为常量 D.不为常量,也不单调

考题 奇函数f(x)在闭区间[-1,1]上可导,且f′(x)≤M(M为正常数),则必有( )《》( )A.f(x)≥M B.f(x)>M C.f(x)≤M D.f(x)<M

考题 已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

考题 已知函数f(x)在区间(0,1)内可导,则以下结论正确的是( )。

考题 随机变量的分布函数的值域是()A、开区间(0,1)B、半开半闭区间(0,1]C、闭区间[0,1]D、半开半闭区间[0,1)

考题 问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

考题 问答题设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。  (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式;  (2)证明:|f′(c)|<2a+b/2。

考题 单选题奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有(  )。A |f(x)|≥MB |f(x)|>MC |f(x)|≤MD |f(x)|<M

考题 问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

考题 问答题设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

考题 填空题设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。