网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内( )
A.单调减少
B.单调增加
C.为常量
D.不为常量,也不单调
B.单调增加
C.为常量
D.不为常量,也不单调
参考答案
参考解析
解析:由于f'(x)>0,可知f(x)在(0,1)内单调增加.因此选B.
更多 “设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内( )A.单调减少 B.单调增加 C.为常量 D.不为常量,也不单调” 相关考题
考题
若函数y=f(x)是一随机变量的概率密度,则()一定成立。
A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续
考题
以下四个命题中,正确的是( )A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界
B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界
C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界
D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数
B.设f(x)为单调函数,则f(x)也为单调函数
C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
考题
设在f(x)上连续,在[0,1]内可导,且f(0)=f(1),则:在(0,1)内曲线y=f(x)的所有切线中《》( )A.至少有一条平行于x轴
B.至少有一条平行于y轴
C.没有一条平行于x轴
D.可能有一条平行于y轴
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
A. f'(x)>0,f''(x)>0 B. f(x) 0
C. f'(x)>0,f''(x)
考题
已知函数
(1)求f(x)单调区间与值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。
考题
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
考题
问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。
考题
问答题设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。 (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式; (2)证明:|f′(c)|<2a+b/2。
考题
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A
对任意x,f′(x)>0B
对任意x,f′(x)≤0C
函数-f(-x)单调增加D
函数f(-x)单调增加
考题
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A
曲线是向上凹的B
曲线是向上凸的C
单调减少D
单调增加
考题
填空题设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。
热门标签
最新试卷