网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( )
A.单调增加且为凹
B.单调增加且为凸
C.单调减少且为凹
D.单调减少且为凸
B.单调增加且为凸
C.单调减少且为凹
D.单调减少且为凸
参考答案
参考解析
解析:本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.由于在(a,6)内,f′(x)>0,可知f(x)在(a,b)内单调增加,又由于,f″(x)<0,可知曲线y=f(x)在(a,b)内为凸,可知应选B.
更多 “函数y=f(x)在(a,6)内二阶可导,且f′(x)>0,f″(x)<0,则曲线y=f(x)在(a,6)内( ).《》( )A.单调增加且为凹 B.单调增加且为凸 C.单调减少且为凹 D.单调减少且为凸” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?
A.必有极大值 B.必有极小值
C.可能取得极值 D.必无极值
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设f(x)=|x(1-x)|,则( ).《》( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点
B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点
C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点
D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。A
f(0)是f(x)的极大值B
f(0)是f(x)的极小值C
点(0,f(0))是曲线y=f(x)的拐点D
f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f″(x)+f(x)=0B
f′(x)+f(x)=0C
f″(x)+f′(x)=0D
f″(x)+f′(x)+f(x)=0
考题
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A
1/5B
1/7C
-1/7D
-1/5
考题
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A
1B
-1C
1/7D
-1/7
考题
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A
曲线是向上凹的B
曲线是向上凸的C
单调减少D
单调增加
考题
单选题设f(x)在(-∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则( )。A
x0必是f′(x)的驻点B
(-x0,-f(x0))必是y=-f(-x)的拐点C
(-x0,-f(x0))必是y=-f(x)的拐点D
对∀x>x0与x<x0,y=f(x)的凸凹性相反
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f′(x)+f(x)=0B
f′(x)-f(x)=0C
f″(x)+f(x)=0D
f″(x)-f(x)=0
热门标签
最新试卷