网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
若f(x)在点x=a处可导,则f′(a)≠( )。《》( )


参考答案

参考解析
解析:
更多 “若f(x)在点x=a处可导,则f′(a)≠( )。《》( ) ” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

考题 若f(x)在处可导,则∣f(x)∣在x=x0处() A、可导B、不可导C、连续但未必可导D、不连续

考题 若f(x)在点x有极限,则结论()成立。 A、f(x)在点x。可导B、f(x)在点x。连续C、f(x)在点x。有定义D、f(x)在点x。可能没有定义

考题 下列命题正确的是(). A若|f(x)|在x=a处连续,则f(x)在x=a处连续 B若f(x)在x=a处连续,则|f(x)|在x=a处连续 C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续 D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 A.F(x)在x=0点不连续 B.F(x)在(-∞,+∞)内连续,在x=0点不可导 C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x) D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

考题 若f(x)在点x=a处可导,则f′(a)≠( )。

考题 已知函数f(x)在x=1处可导,则f'(1)等于: A. 2 B. 1

考题 设函数若f(x)在x=0处可导,则a的值是: A. 1 B. 2 C. 0 D. -1

考题 下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点 B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点 C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0 D.若函数f(x)在点x0处连续,则f'(x0)一定存在

考题 设函数f(x)在x=1处可导,且f'(1)=0,若f"(1)>0,则f(1)是()A.极大值 B.极小值 C.不是极值 D.是拐点

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 设f(x)在x=a的某个邻域内有定义,则f(x)在x-a处可导的一个充分条件是( )。

考题 如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0处()。 A.可能可导也可能不可导 B.不可导 C.可导 D.连续

考题 设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.

考题 下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0 B.若f'(xo)=0,则点xo必为f(x)的极值点 C.若f'(xo)≠0,则点xo必定不为f(x)的极值点 D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0

考题 若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

考题 若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题以下关于二元函数的连续性的说法正确是(  )。A 若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B 若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C 若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D 以上说法都不对

考题 单选题设函数f(x)=丨x丨,则函数在点x=0处()A 连续且可导B 连续且可微C 连续不可导D 不可连续不可微

考题 单选题若f(x)在x0点可导,则|f(x)|在点x0点处(  )。A 必可导B 连续但不一定可导C 一定不可导D 不连续

考题 判断题若f(x)在x0点可指导,则丨f(x)丨也在x0点可指导。A 对B 错

考题 判断题若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.A 对B 错

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件