网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
函数(C1,C2为任意数)是微分方程y″-y′-2y=0的( )。[2014年真题]
A
通解
B
特解
C
不是解
D
解,既不是通解又不是特解
参考答案
参考解析
解析:
微分方程y″-y′-2y=0的特征方程为:r2-r-2=0,解特征方程得:r1=2,r2=-1。故其通解为:y=C1e2x+C2e-x,即题中函数是方程的解,但不是通解或特解。
微分方程y″-y′-2y=0的特征方程为:r2-r-2=0,解特征方程得:r1=2,r2=-1。故其通解为:y=C1e2x+C2e-x,即题中函数是方程的解,但不是通解或特解。
更多 “单选题函数(C1,C2为任意数)是微分方程y″-y′-2y=0的( )。[2014年真题]A 通解B 特解C 不是解D 解,既不是通解又不是特解” 相关考题
考题
在下列微分方程中,以函数y=C1e^-x+C2e^4x(C1,C2为任意常数)为通解的微分方程是( )。A. y″+3y′-4y=0
B. y″-3y′-4y=0
C. y″+3y′+4y=0
D. y″+y′-4y=0
考题
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:
A. y"-2y'-3y=0
B. y"+2y'-3y=0
C. y"-3y'+2y=0
D. y"+2y'+y=0
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″-y′+y=0B
y″-2y′+2y=0C
y″-2y′=0D
y′+2y=0
考题
单选题以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″-2y′-3y=0
考题
单选题(2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()A
y″-2y′-3y=0B
y″+2y′-3y=0C
y″-3y′+2y=0D
y″+2y′+y=0
考题
单选题函数y=C1ex+C2e-2x+xex满足的一个微分方程是( )。A
y″-y′-2y=3xexB
y″-y′-2y=3exC
y″+y′-2y=3xexD
y″+y′-2y=3ex
考题
单选题设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为( )。A
y″+2y′+2y=0B
y″-2y′+2y=0C
y″-2y′-2y=0D
y″+2y′+2y=0
热门标签
最新试卷