网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则P{Y=2}=( )。
A.3/64 B.9/64 C.3/16 D. 9/16


参考答案

参考解析
解析:
更多 “设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则P{Y=2}=( )。 A.3/64 B.9/64 C.3/16 D. 9/16” 相关考题
考题 设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则.P(X+Y>1)等于().

考题 设随机变量X的概率密度为则Y表示对X的3次独立重复观察中事件{x=1/2}出现的次数,则P{Y=2}=: A.3/64 B.9/64 C.3/16 D.9/16

考题 设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.

考题 设随机变量X的概率密度为      对X独立地重复观察4次,用Y表示观察值大于的次数,求Y^2的数学期望.

考题 设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

考题 设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).

考题 设随机变量X的概率密度函数为fxcx)=,则y=2X的密度函数为(y)=_______.

考题 设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=_______.

考题 设随机变量X,y相互独立,且X~P(1),y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).

考题 设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y^2).

考题 设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

考题 设X~f(x)=对X进行独立重复观察4次,用Y表示观察值大于的次数,求E(Y^2).

考题 设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

考题 设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.

考题 设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;   (Ⅱ)Y的概率密度;   (Ⅲ)概率P{X+Y>1}.

考题 设随机变量X的概率密度为令随机变量,   (Ⅰ)求Y的分布函数;   (Ⅱ)求概率P{X≤Y}.

考题 设随机变量X的概率密度为      对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.   (Ⅰ)求Y的概率分布;   (Ⅱ)求EY.

考题 设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;   (Ⅱ)p为何值时,X与Z不相关;   (Ⅲ)X与Z是否相互独立?

考题 设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为   (Ⅰ)求P{Y≤EY};   (Ⅱ)求Z=X+Y的概率密度.

考题 设X,Y是相互独立的随机变量,X~N(2,σ2),Y~N(-3,σ2),且P{|2X+Y-1|≤8.7654}=0.95,则σ=()。

考题 设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()

考题 设随机变量X与Y相互独立,X~π(2),Y~π(3),则P{X+Y≤1}=()。

考题 设随机变量X与Y相互独立,且X~N(2,22),Y~N(-1,1),则P{|2X+3Y-1|≤9.8}=()。

考题 设随机变量X概率密度为p(x),Y=-X,则Y的密度为()。A、-p(y)B、1-p(-y)C、p(-y)D、.p(y)

考题 设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。

考题 单选题设随机变量X的概率密度函数f(x)=1/[π(1+x2)],则Y=3X的概率密度函数为(  )。A 1/[π(1+y2)]B 3/[π(9+y2)]C 9/[π(9+y2)]D 27/[π(9+y2)]

考题 问答题设随机变量(X,Y)的概率密度为   求:(1)系数k.   (2)边缘概率密度fX(x),fY(y).   (3)P{X+Y1}.