网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。
A

O

B

-E

C

E

D

E+αTα


参考答案

参考解析
解析:
注意利用ααT=1/2来简化计算。AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α=E+αTα-2·(1/2)αTα=E。
更多 “单选题设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于(  )。A OB -EC ED E+αTα” 相关考题
考题 设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= A.E B.-E C.A D.-A

考题 设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( ) A.r(A)=r(B)=m B.r(A)=m r(B)=n C.r(A)=n r(B)=m D.r(A)=r(B)=n

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 设A、B都是n阶可逆矩阵,则 A. (-3)n A B -1 B. -3 A T B T C. -3 A T B -1 D. (-3)2n A B -1

考题 设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β使得A=αβT.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设n阶矩阵A 满足,其中s≠t,证明A可对角化

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设α为n维单位列向量,E为n阶单位矩阵,则 A.AE-AA^T不可逆 B.E+AA^T不可逆 C.E+2AA^T不可逆 D.E-2AA^T不可逆

考题 设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m B.r(A)=m,r(B)=n C.r(A)=n,r(B)=m D.r(A)=n,r(B)=n

考题 设T=(t1,t2,„„,tn)为概率向量,P=(Pij)n*n为概率矩阵,则当k→∞时,必有()A、TPk等于P的平衡概率矩阵B、TPk不等于P的平衡概率矩阵C、TPk与P的平衡概率矩阵中的任一行向量都相等D、TPk与P的平衡概率矩阵中的任一行向量都不相等

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 问答题设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。

考题 单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A (A+E)/2B -(A+E)/2C (A-E)/2D -(A-E)/2

考题 填空题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=____。

考题 单选题设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于(  )。A |A|2B |A|nC |A|2nD |A|2n-1

考题 问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明:  (1)A2=A的充要条件是α(→)Tα(→)=1;  (2)当α(→)Tα(→)=1时,A是不可逆矩阵。

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A 4B 2C -1D 1

考题 单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A -1B 1C -2D 2

考题 单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A -A*B A*C (-1)nA*D (-1)n-1A*

考题 单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=(  )。A A+2EB A+EC (A+E)/2D -(A+E)/2