网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。
A
4
B
2
C
-1
D
1
参考答案
参考解析
解析:
由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-ααT)(E+ααT/a)=E-ααT+ααT/a-α(αTα)αT/a=E,即ααT(1/a-1-2a2/a)=0。
由于ααT≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。
由矩阵B是矩阵A的逆矩阵,所以有AB=E。从而(E-ααT)(E+ααT/a)=E-ααT+ααT/a-α(αTα)αT/a=E,即ααT(1/a-1-2a2/a)=0。
由于ααT≠0,故1/a-1-2a2/a=0,又因a<0,可得a=-1。
更多 “单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A 4B 2C -1D 1” 相关考题
考题
设A为n阶实对称矩阵,则().
A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k
考题
设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。
A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0
考题
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量
考题
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A
-2B
-1C
0D
1
考题
单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A
β是A的属于特征值0的特征向量B
α是A的属于特征值0的特征向量C
β是A的属于特征值3的特征向量D
α是A的属于特征值3的特征向量
考题
问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明: (1)A2=A的充要条件是α(→)Tα(→)=1; (2)当α(→)Tα(→)=1时,A是不可逆矩阵。
考题
单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是( )。A
A的任意m个列向量必线性无关B
A的任一个m阶子式不等于0C
非齐次线性方程组AX(→)=b(→)一定有无穷多组解D
A通过行初等变换可化为(Em,0)
热门标签
最新试卷