网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
若学生在学习正方形、长方形、三角形时已形成了轴对称图形的概念,学习“圆也是轴对称图形”这一新知识,属于哪种概念同化方式?()
A

下位学习

B

上位学习

C

并列结合学习

D

总括性学习


参考答案

参考解析
解析: 暂无解析
更多 “单选题若学生在学习正方形、长方形、三角形时已形成了轴对称图形的概念,学习“圆也是轴对称图形”这一新知识,属于哪种概念同化方式?()A 下位学习B 上位学习C 并列结合学习D 总括性学习” 相关考题
考题 下列数学概念一般采用概念同化的方式学习的是() A、分数B、直角三角形C、圆D、自然数

考题 学生学习了长方形、正方形、平行四边形后,掌握了“四边形”的概念。这种学习是( )A.连锁学习B.概念学习C.辨别学习D.规则学习

考题 学生在学习正方形、长方形、三角形时已形成了轴对称图形概念,在学习圆时,学生立即就能发现圆具有轴对称图形的一切特征,从而得出“圆也是轴对称图形”的结论。这一学习属于()。A.符号学习 B.并列结合学习 C.下位学习 D.上位学习

考题 三角形是由三个角和三条相连接的边构成的图形,这属于(  )。A.概念学习 B.命题学习 C.表征学习 D.发现学习

考题 学生在了解了长方形面积公式、三角形面积公式及面积的可加性原则后,生成了梯形面积的计算公式。按照加涅的学习分类标准,这种学习属于 A.辨别学习 B.概念学习 C.规则学习 D.高级规则学习

考题 学生学习了长方形、正方形、平行四边形后,掌握了“四边形”概念。这种学习是()。 A.连锁学习 B.概念学习 C.辨别学习 D.规则学习

考题 初中数学《轴对称现象》 一、考题回顾 题目来源1月6日 下午 黑龙江省哈尔滨市 面试考题 试讲题目1.题目:轴对称现象 2.内容: ? 3.基本要求: (1)有板书设计。 (2)发现生活中的轴对称图形,体会轴对称图形的含义。 (3)教学中注意条理清晰,重点突出。 (4)请在10分钟内完成试讲内容。 答辩题目1.为什么要学习轴对称现象? 2.在本节课的教学过程中,你是如何设计探究轴对称现象的? 二、考题解析 【教学过程】 (一)导入新课 教师描述:同学们,上课之前老师给大家讲一个小故事。(播放动画)在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜。忽然!来了一只蜻蜓在它面前飞来飞去,蝴蝶生气的说“谁在跟我捣乱?”蜻蜓笑嘻嘻地说“你怎么连一家人都不认识了,我是来找你玩的。”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家人呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢。”故事讲完了,同学们你们明白蜻蜓说的话吗? 预设:学生们议论纷纷却理解不了蜻蜓话中含义,到这里学生遇到瓶颈,我将顺势引出课题,本节课来学习《轴对称现象》。 (二)生成新知 活动一:让学生举出一些生活中轴对称图形的例子,检验学生对于轴对称图形本质特征的认识情况。之后通过大屏幕呈现若干轴对称图形,引导学生去观察,再类比之前所学的内容概括出这些图形的共同特征。 提问:这些美丽的图形来自生活,认真观察这些图形有什么共同特征?用自己的语言来描述。 预设:图形左右两部分对称。 追问:你能将图中的窗花沿某条直线对折,使直线两旁的部分完全重合吗?其他图形呢? 预设:都能找到一条线使左右完全重合。 活动二:小组讨论。通过观察,引导学生进行归纳验证,并动手操作“折纸”实验,总结得出轴对称图形和对称轴的相关概念。 预设:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 活动三:请大家拿出准备好的图形,动手折一折、画一画,找出它们的对称轴,有几条呢? ? 预设:圆有无数条对称轴,等边三角形有三条对称轴。 引导学生注意观察自己动手折过的图形以及所画的对称轴,看能不能有什么发现?在同桌交流的基础上,适时引导学生进行归纳总结,得出轴对称的概念:如果一个图形沿着一条直线翻折,能够与另一个图形完全重合,我们称这两个图形关于这条直线成轴对称,这条直线就叫对称轴。 (三)应用新知 1.观察下面的图形,哪些图形是轴对称图形?画出对称轴。 ? 2.展示活动:自己设计一个优美的轴对称图案。 (四)小结作业 小结:通过这节课的学习,你有什么收获? 作业:找一找语文汉字中哪些字是轴对称图形? 【板书设计】 轴对称现象 轴对称图形: 对称轴: 轴对称: 1.为什么要学习轴对称现象? 2.在本节课的教学过程中,你是如何设计探究轴对称现象的?

考题 学生学习了正方形、长方形、平行四边形后,掌握了“四边形”的概念。这种学习属于( )。A.辨别学习 B.连锁学习 C.规则学习 D.概念学习

考题 学生在了解了长方形面积公式、三角形面积公式及面积的可加性原则后,生成了梯形面积的计算公式。按照加涅的学习分类标准,这种学习属于()A、辨别学习B、概念学习C、规则学习D、高级规则学习

考题 学生学习了“平行四边形”概念,学生完全可以由认知结构中原有的概念掌握它,同时学生对“四边形”这一上位概念的认识没有变。这种方式叫()A、概念的同化B、概念的形成C、概念的运用D、概念的学习

考题 若学生在学习正方形、长方形、三角形时已形成了轴对称图形的概念,学习“圆也是轴对称图形”这一新知识,属于哪种概念同化方式?()A、下位学习B、上位学习C、并列结合学习D、总括性学习

考题 学生在学习正方形、长方形、等边三角形和圆的过程中,总结这四类图形都有一个共同的特征:所有图形沿着一条直线对折后两部分完全重合学生习得抽对称这个概念学生学习这种概念的形式是()A、相关类属过程B、派生类属学习C、上位学习D、并列结合学习

考题 学生积极主动地进行辨别,对概念的规则提出假设,检验假设,直至发现概念的本质属性,这属于哪种概念学习方式?()。A、概念形成B、概念同化C、上位学习D、类属学习

考题 三角形衣架是我们日常生活用品,这些衣架都是有两个角相等,这样形成了一个轴对称图形,这个轴对称图形只有一条()

考题 学生在学习正方形、长方形、三角形时已形成了轴对称图形的概念(已有知识),在学习圆时,“圆也是轴对称图形”这一命题(新知识)的学习,是()A、上位学习B、下位学习C、并列学习D、结合学习

考题 面积相等的图形中下列图形周长最短的是()A、圆B、三角形C、长方形D、正方形

考题 学习正方形中已经掌握的轴对称圆形后,学习时告诉图也是轴对称图形,学生立即发现图具有轴对称特征,这种学习方式是()A、上位学习B、相关类属C、派生类属D、并列类属

考题 学生学习了长方形、正方形、平行四边形后,掌握了“四边形”的概念。这种学习是()。A、连锁学习B、概念学习C、辨别学习D、规则学习

考题 面积概念形成以后,再学习具体图形,如三角形、圆形等面积概念,这种学习叫做()。A、下位学习B、总括学习C、上位学习D、并列结合学习

考题 单选题学生积极主动地进行辨别,对概念的规则提出假设,检验假设,直至发现概念的本质属性,这属于哪种概念学习方式?()。A 概念形成B 概念同化C 上位学习D 类属学习

考题 单选题学习正方形中已经掌握的轴对称圆形后,学习时告诉图也是轴对称图形,学生立即发现图具有轴对称特征,这种学习方式是()A 上位学习B 相关类属C 派生类属D 并列类属

考题 单选题若学生在学习正方形、长方形、三角形时已成形轴对称图形概念,在学习圆时,“圆也是轴对称图形”这一命题被纳入或类属于原有轴对称图形概念,新的命题很快就获得意义,学生立即能发现圆具有轴对称图形的一切特征这种概念学习的形式是()A 相关类属过程B 派生类属学习C 上位学习D 并列结合学习

考题 单选题学生在学习正方形、长方形、三角形时已形成了轴对称图形的概念(已有知识),在学习圆时,“圆也是轴对称图形”这一命题(新知识)的学习,是()A 上位学习B 下位学习C 并列学习D 结合学习

考题 单选题面积相等的图形中下列图形周长最短的是()A 圆B 三角形C 长方形D 正方形

考题 单选题下列数学概念一般采用概念同化的方式学习的是()A 分数B 直角三角形C 圆D 自然数

考题 单选题学生在学习正方形、长方形、等边三角形和圆的过程中,总结这四类图形都有一个共同的特征:所有图形沿着一条直线对折后两部分完全重合学生习得抽对称这个概念学生学习这种概念的形式是()A 相关类属过程B 派生类属学习C 上位学习D 并列结合学习

考题 单选题(2014黑龙江大庆)学习几何图形时,学习了矩形的概念,再学习正方形的概念。这种学习属于()。A 上位学习B 下位学习C 并列结合学习D 平行学习