网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
多选题
只要满足以下()准则中之一,就可以以为目标函数f(X(k+1))已收敛于其极小值。
A
点距足够小
B
可行点数足够小
C
外点数足够小
D
函数下降量足够小
E
函数梯度充分小
参考答案
参考解析
解析:
暂无解析
更多 “多选题只要满足以下()准则中之一,就可以以为目标函数f(X(k+1))已收敛于其极小值。A点距足够小B可行点数足够小C外点数足够小D函数下降量足够小E函数梯度充分小” 相关考题
考题
● 某一类应用问题中,需要求正比例函数与反比例函数之和的极值。例如,正比例函数 4x 与反比例函数 9/x 之和用 f(x)表示, 即 f(x)=4x + 9/x, (x0) ,那么函数 f(x) (63) 。(63)A. 没有极小值B. 在 x=1 时达到极大值C. 在 4x=9/x 时达到极小值D. 极大值是极小值的 9/4 倍
考题
设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(52)。A.一个极小值点和两个极大值点B.两个极小值点和一个极大值点C.两个极小值点和两个极大值点D.三个极小值点和一个极大值点
考题
下列命题中,哪个是正确的?
A.周期函数f(x)的傅立叶级数收敛于f(x)
B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)
C.若正项级数收敛,则必收敛
D.正项级数收敛的充分且必-条件是级数的部分和数列有界
考题
f(x)在(-∞,+∞)内连续,其导数函数f′(x)图形如图所示,则f(x)有( )。
A.一个极小值点和两个极大值点
B.两个极小值点和两个极大值点
C.两个极小值点和一个极大值点
D.一个极小值点和三个极大值点
考题
下列命题中,哪个是正确的?
A.周期函数f(x)的傅立叶级数收敛于f (x)
B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)
D.正项级数收敛的充分且“条件是级数的部分和数列有界
考题
设函数y-f(x)连续,除x=a外f''(x)均存在。一一阶导函数y'=f(x)的图形如下,则y=f(x)
A.有两个极大值点,一个极小值点,一个拐点
B.有一个极大值点,一个极小值点,两个拐点
C.有一个极大值点,一个极小值点,一个拐点
D.有一个极大值点,两个极小值点,两个拐点
考题
设函数y=f(x)的导函数,满足f′(一1)=0,当x<-l时,f′(x)<0;当x>-l时,f′(x)>0.则下列结论肯定正确的是( ).《》( )A.x=-1是驻点,但不是极值点
B.x=-1不是驻点
C.x=-1为极小值点
D.x=-1为极大值点
考题
单选题已知函数y=f(x)对一切x满足,若f’(x0)=0(x0≠0),则().A
f(x0)是f(x)的极大值B
f(x0)是f(x)的极小值C
(x0(x0))是曲线y=f(x)的拐点D
f(x0)不是f(x)的极值,(x0(x0))也不是曲线y=f(x)的拐点
考题
单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则( )。A
f(0)是f(x)的极大值B
f(0)是f(x)的极小值C
点(0,f(0))是曲线y=f(x)的拐点D
f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
考题
单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处( )A
必取得极小值B
必取得极大值C
不可能取得极值D
可能取极大值,也可能去极小值
考题
单选题标函数F(x)=x12+x22-x1x2,具有等式约束,其等式约束条件为h(x)=x1+x2-1=0,则目标函数的极小值为()。A
1B
0.5C
0.25D
0.1
热门标签
最新试卷