网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
若某点为二元函数f(x,y)的二阶可微的极大值点,则在这点处()。
A

关于的x二阶导数大于0

B

关于的x二阶导数小于0

C

关于的y二阶导数大于0

D

关于的y二阶导数小于0


参考答案

参考解析
解析: 暂无解析
更多 “单选题若某点为二元函数f(x,y)的二阶可微的极大值点,则在这点处()。A 关于的x二阶导数大于0B 关于的x二阶导数小于0C 关于的y二阶导数大于0D 关于的y二阶导数小于0” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

考题 若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。

考题 若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是: A.f(x,y)的极值点一定是f(x,y)的驻点 B.如果P0是f(x,y)的极值点,则P0点处B2-AC C.如果P0是可微函数f(x,y)的极值点,则在P0点处df=0 D.f(x,y)的最大值点一定是f(x,y)的极大值点

考题 函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点 B.x=0不是函数(x)的极值点 C.x=0是函数(x)的极小值点 D.x=0是函数(x)的极大值点

考题 若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是( )。 A. f(x,y)的极值点一定是f(x,y)的驻点 B.如果P0是f(x,y)的极值点,则P0点处B2-AC) C.如果P0是可微函数f(x,y)的极值点,则P0点处df=0 D.f(x,y)的最大值点一定是f(x,y)的极大值点

考题 若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A、连续B、偏导数存在C、偏导数连续D、切平面存在

考题 若某点为二元函数的极值点,则这点()。A、一定是函数的可微点B、一定是函数的不可微点C、一定是函数的驻点D、或是驻点或是不可微点

考题 点(2,-2)是函数f(x,y)=x(4―x)―y(y+4)的()。A、极小值点B、非极值点C、非极值驻点D、极大值点

考题 下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

考题 若某点是二元函数的驻点,则函数在这点处的()。A、各个偏导数大于0B、各个偏导数小于0C、各个偏导数等于0D、各二阶偏导数等于0

考题 二阶可微的函数在极大值点处二阶导数大于0。

考题 若一点是函数的拐点,则在这点的左右函数的二阶导数要反号。

考题 若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。A、f(x,y)的极值点一定是f(x,y)的驻点B、如果P0是f(x,y)的极值点,则P0点处B2-AC0C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0D、f(x,y)的最大值点一定是f(x,y)的极大值点

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题若某点是二元函数的驻点,则函数在这点处的()。A 各个偏导数大于0B 各个偏导数小于0C 各个偏导数等于0D 各二阶偏导数等于0

考题 单选题以下关于二元函数的连续性的说法正确是(  )。A 若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B 若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C 若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D 以上说法都不对

考题 单选题点(2,-2)是函数f(x,y)=x(4―x)―y(y+4)的()。A 极小值点B 非极值点C 非极值驻点D 极大值点

考题 判断题二阶可微的函数在极大值点处二阶导数大于0。A 对B 错

考题 单选题若某点为二元函数的极值点,则这点()。A 一定是函数的可微点B 一定是函数的不可微点C 一定是函数的驻点D 或是驻点或是不可微点

考题 单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A ②⇒③⇒①B ③⇒②⇒①C ③⇒④⇒①D ③⇒①⇒④

考题 单选题二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。A 充分条件B 必要条件C 充要条件D 以上都不是

考题 单选题若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A 连续B 偏导数存在C 偏导数连续D 切平面存在

考题 判断题若一点是函数的拐点,则在这点的左右函数的二阶导数要反号。A 对B 错

考题 单选题y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。A 在x0点取得极大值B 在x0的某邻域单调增加C 在x0点取得极小值D 在x0的某邻域单调减少

考题 单选题设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。A 不是f(x,y)的连续点B 不是f(x,y)的极值点C 是f(x,y)的极大值点D 是f(x,y)的极小值点

考题 单选题若某点为二元函数f(x,y)的二阶可微的极大值点,则在这点处()。A 关于的x二阶导数大于0B 关于的x二阶导数小于0C 关于的y二阶导数大于0D 关于的y二阶导数小于0

考题 单选题若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。A f(x,y)的极值点一定是f(x,y)的驻点B 如果P0是f(x,y)的极值点,则P0点处B2-AC0C 如果P0是可微函数f(x,y)的极值点,则P0点处df=0D f(x,y)的最大值点一定是f(x,y)的极大值点