网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)=



参考答案

参考解析
解析:由f(x)=f(x+4),知f(x)是周期为4的周期函数,故f(19)=f(-1),

更多 “已知函数f(x)=f(x+4),f(0)=0,且在(—2,2)上有f'(x)=|x|,则f(19)= ” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。() 此题为判断题(对,错)。

考题 设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:

考题 设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0 B.(x-a)[f(x)-f(a)]≤0 C. D.

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0 B.f′(x)<0,f″(x)>0 C.f′(x)>0,f″(x)<0 D.f′(x)>0,f″(x)>0

考题 设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有: A. f'>0, f''>0 B.f'<0, f''<0 C. f'<0, f''>0 D. f'>0, f''<0

考题 函数y=f(x)在点x=x0处取得极小值,则必有: A.f′(x0)=0 B.f′′(x0)>0 C. f′(x0)=0 且 f(xo)>0 D.f′(x0)=0 或导数不存在

考题 函数y=f(x) 在点x=x0处取得极小值,则必有: A. f'(x0)=0 B.f''(x0)>0 C. f'(x0)=0且f''(x0)>0 D.f'(x0)=0或导数不存在

考题 设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0, 则在(- ∞ ,0)内必有: (A) f ' > 0, f '' > 0 (B) f ' 0 (C) f ' > 0, f ''

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0 C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0

考题 已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于: A.-K B.K C. -1/K D.1/K

考题 下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点 B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点 C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0 D.若函数f(x)在点x0处连续,则f'(x0)一定存在

考题 定义在R上的奇函数.f(x),满足f(x+4)=-f(x),且在[0,2]为增函数,则有( )。A.f(19)>f(24)>f(-25) B.f(24)>f(19)>f(-25) C.f(-25)>f(19)>f(24) D.f(-25)>f(24)>f(19)

考题 设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0 B.f(0)>1,f"(0)C.f(0)0 D.f(0)

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 若函数f(-x)=-f(x) (-∞0,f(x)A. f(x)>0, f(x)0 C. f(x)>0, f(x)>0 D.f(x)

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。 A. f'(x)>0,f''(x)>0 B. f(x) 0 C. f'(x)>0,f''(x)

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

考题 单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。A f(0)是f(x)的极大值B f(0)是f(x)的极小值C 点(0,f(0))是曲线y=f(x)的拐点D f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

考题 单选题设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A f'(x)0,f"(x)0B f'(x)0,f"(x)0C f'(x)O,f"(x)0D f'(x)0,f"(x)0

考题 单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A f′(x)0,f″(x)0B f′(x)0,f″(x)0C f′(x)0,f″(x)0D f′(x)0,f″(x)0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 填空题f(x)是奇函数且在x=0处有定义,则f(0)=____.

考题 单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]A f′(x)>0,f″(x)<0B f′(x)<0,f″(x)>0C f′(x)>0,f″(x)>0D f′(x)<0,f″(x)<0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0