网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
如果奇函数f(x)在区间[a,b](0<a<b)上是增函数,且最小值为2,那么f(x)在区间[-b,-a]上是(  ).
A

增函数且最小值为-2

B

增函数且最大值为-2

C

减函数且最小值为-2

D

减函数且最大值为-2


参考答案

参考解析
解析:
由于奇函数的图象关于坐标原点对称,借助图象(可作一草图,略),可知函数在原点两边定义域对称的范围内,其函数增减性一致.因此fx)在[-b,-a]上也是增函数.而原点右边某一区间上的最大(小)值C,对称过去应为原点左边相应区间的最小(大)值-C.
更多 “单选题如果奇函数f(x)在区间[a,b](0<a<b)上是增函数,且最小值为2,那么f(x)在区间[-b,-a]上是(  ).A 增函数且最小值为-2B 增函数且最大值为-2C 减函数且最小值为-2D 减函数且最大值为-2” 相关考题
考题 求函数f(x)=x3-6x2+9x-4在闭区间[0,2]上的最大值和最小值.

考题 已知函数f(x)=x3-4x2.(I)确定函数f(x)在哪个区问是增函数,在哪个区间是减函数;(Ⅱ)求函数f(x)在区间[0,4]上的最大值和最小值.

考题 设函数f(x)=x4-4x+5.(I)求f(x)的单调区间,并说明它在各区间的单调性;(Ⅱ)求f(x)在区间[0,2]的最大值与最小值.

考题 设R(t)表示可靠度函数,F(t)表示累积故障分布函数,则以下描述正确的是( )。A.R(t)是[0,∞)区间内的非减函数,且0≤R(t)≤1B.R(t)是[0,∞]区间内的非增函数,且0≤R(t)≤lC.在(0,∞)区间内,R(t)+F(t)=lD.F(t)在[0,∞]区间内的非减函数,且0≤F(t)≤1E.F(t)在[0,∞]区间内的非增函数

考题 设R(t)表示可靠度函数,F(t)表示累积故障分布函数,则下列表述正确的有( )。A.R(t)是[0,∞)区间内的非减函数,且0≤R(t)≤1B.R(t)是[0,∞)区间内的非增函数,且0≤R(t)≤1C.在[0,∞)区间内,R(t)+F(t)=1D.F(t)在[0,∞)区间内的非减函数,且0≤F(t)≤1E.F(t)在[0,∞)区间内是非增函数

考题 设定义域在R上的函数f(x)=x|x|,则f(x)是A.奇函数,增函数B.偶函数,增函数C.奇函数,减函数D.偶函数,减函数

考题 当X>0时,f(x)=5x²+2是() A、增函数B、减函数C、周期函数D、奇函数

考题 设有方程f(x)=0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分法求该方程在区间[a,b]上的一个实根,采用的算法设计技术为( )

考题 设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有: A. f'>0, f''>0 B.f'<0, f''<0 C. f'<0, f''>0 D. f'>0, f''<0

考题 定义在R上的奇函数.f(x),满足f(x+4)=-f(x),且在[0,2]为增函数,则有( )。A.f(19)>f(24)>f(-25) B.f(24)>f(19)>f(-25) C.f(-25)>f(19)>f(24) D.f(-25)>f(24)>f(19)

考题 函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 A.为奇函数且在(-∞,0)上是减函数 B.为奇函数且在(-∞,0)上是增函数 C.为偶函数且在(0,+∞)上是减函数 D.为偶函数且在(0,+∞)上是增函数

考题 已知函数f(x)在闭区间[a,b].上连续,且f(a).f(b)

考题 奇函数f(x)在闭区间[-1,1]上可导,且f′(x)≤M(M为正常数),则必有( )《》( )A.f(x)≥M B.f(x)>M C.f(x)≤M D.f(x)<M

考题 设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )。A.3 B.1 C.-1 D.-3

考题 设F(X)为区间(0,3)上的单峰函数,且F(1)=2、F(2)=1.5,则可将搜索区间(0,3)缩小为()A、(0,2)B、(1,2)C、(2,3)D、(1,3)

考题 设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否为奇函数不能确定

考题 单选题(2006)设f(x)在(-∞,+∞)上是奇函数,在(0,+∞)上f′(x)0,则在(-∞,0)上必有:()A f′0,f″0B f′0,f″0C f′0,f″0D f′0,f″0

考题 问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

考题 单选题奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有(  )。A |f(x)|≥MB |f(x)|>MC |f(x)|≤MD |f(x)|<M

考题 问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

考题 单选题函数f(x)=sin(x+π/2+π)在区间[-π,π]上的最小值点x0等于(  )。[2017年真题]A -πB 0C π/2D π

考题 单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。A 奇函数B 偶函数C 周期函数D 单调函数

考题 单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A 没有实根B 有两个实根C 有无穷多个实根D 有且仅有一个实根

考题 问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。