网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

6、A=[1,2;8,7];求A的特征值是

A.1,9

B.-1,9

C.0,-9

D.0,-1


参考答案和解析
更多 “6、A=[1,2;8,7];求A的特征值是A.1,9B.-1,9C.0,-9D.0,-1” 相关考题
考题 设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为()。 A、3,5B、1,2C、1,1,2D、3,3,5

考题 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=() A、-1B、-2C、1D、2

考题 设A为三阶方阵,其特征值为1,-1,2,则A^2的特征值为1,1,4。() 此题为判断题(对,错)。

考题 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=1。() 此题为判断题(对,错)。

考题 雅可比方法是求对称矩阵全部特征值与特征向量的方法。() 此题为判断题(对,错)。

考题 设A,B为n阶矩阵.   (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

考题 设二次型. (Ⅰ)求二次型的矩阵的所有特征值; (Ⅱ)若二次型的规范形为,求的值

考题 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.

考题 已知3阶矩阵A的特征值为1,2,-3,求.

考题 设二次型,(b>0)其中A的特征值之和为1, 特征值之积为-12.(1) 求a,b. (2) 用正交变换化为标准型

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设二次型其中二次型矩阵A的特征值之和为1, 特征值之积-12.(1) 求a,b的值; (2) 求一正交变换把二次型化成标准型(需写出正交变换及标准型)

考题 设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A

考题 设矩阵A=   (1)已知A的一个特征值为3,试求y;   (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

考题 设二维非零向量α不是二阶方阵A的特征向量.   (1)证明α,Aα线性无关;   (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 下列MATLAB命令中,求矩阵A的特征值的命令是()。A、rank(A)B、det(A)C、trace(A)D、eig(A)

考题 X为3阶随机矩阵,分别对X进行如下操作: 求X的三角分解;求X的正交分解;求X的特征值分解;求X的奇异值分解;

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 以下结果正确的是()vara=[9,8,7,6,5];varb=a.slice(1,3);console.log(b)。A、[9,8]B、[9,8,7]C、[8,7,6]D、[8,7]

考题 设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A、3B、5C、7D、不能确定

考题 问答题X为3阶随机矩阵,分别对X进行如下操作: 求X的三角分解;求X的正交分解;求X的特征值分解;求X的奇异值分解;

考题 单选题运动中要合理控制呼吸,蛙泳是()次划手1次呼吸,长跑是()次单步一吸气,()单步一呼气。A 2,2-4,2-4B 2,7-8,7-8C 1,2-4,2-4D 1,7-8,7-8

考题 单选题下列MATLAB命令中,求矩阵A的特征值的命令是()。A rank(A)B det(A)C trace(A)D eig(A)

考题 单选题设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().A 3B 5C 7D 不能确定