网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
半径r的圆盘以其圆心O为轴转动,角速度ω,角加速度为a。盘缘上点P的速度VP,切向加速度apr与法向加速度apn的方向如图,它们的大小分别为:

A. vp=rω,aPr=ra,aPn =rω2 B. vp = rω,aPr=ra2 ,apn=r2ω
C. vp=r/ω,apr=ra2,apn = rω2 D. vp=r/ω,apr= ra,apn=rω2


参考答案

参考解析
解析:提示:根据定轴转动刚体上一点速度、加速度的公式。
更多 “半径r的圆盘以其圆心O为轴转动,角速度ω,角加速度为a。盘缘上点P的速度VP,切向加速度apr与法向加速度apn的方向如图,它们的大小分别为: A. vp=rω,aPr=ra,aPn =rω2 B. vp = rω,aPr=ra2 ,apn=r2ω C. vp=r/ω,apr=ra2,apn = rω2 D. vp=r/ω,apr= ra,apn=rω2” 相关考题
考题 刚体绕定轴转动,当______时刚体作减速转动。A.角加速度为负值B.角速度为负值C.角加速度与角速度方向一致D.角加速度与角速度方向相反

考题 质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:

考题 偏心轮为均质圆盘,其质量为m,半径为R,偏心距OC=R/2。若在图示位置时,轮绕O轴转动的角速度为ω,角加速度为α,则该轮的惯性力系向O点简化的主矢FI和主矩MIO的大小为:

考题 杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度分别为:

考题 均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:

考题 图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。

考题 均质圆盘质量为m,半径为R,在铅垂面绕内O轴转动,图示瞬间角速度为ω,则其对O轴的动量矩大小为(  )。 A.mRω B.mRω/2 C.mR2ω/2 D.3mR2ω/2

考题 忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:

考题 杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。

考题 忽略质量的细杆OC=l,其端部固结匀质圆盘圆心,盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:

考题 杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:

考题 杆OA绕固定轴O转动,圆盘绕动轴A转动,已知杆长l=20cm,圆盘r=10cm,在图示位置时,杆的角速度及角加速度分别为w=4rad/s,ε=3rad/s2;圆盘相对于OA的角速度和角加速度分别为wr=6rad/s,εr=4rad/s2。则圆盘上M1点绝对加速度为( )。 A.a1=363cm/s2 B.a1=463cm/s2 C.a1=563cm/s2 D.a1=663cm/s2

考题 均质圆盘质量为m,半径为R,再铅垂面内绕o轴转动,图示瞬吋角速度为w,则其对o轴的动量矩和动能的大小为:

考题 质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为O,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:

考题 质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:

考题 如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

考题 忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:

考题 圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为: A.aA=aB,θ=φ B. aA=aB,θ=2φ C. aA=2aB,θ=φ D. aA=2aB,θ=2φ

考题 四连杆机构如图所示,己知曲柄O1A长为r,且O1A=O2B,O1O2=AB=2b,角速度为ω、角加速度为α,则M点的速度、切向和法向加速度的大小为(  )。

考题 质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图4-78示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为()。

考题 如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。

考题 如图4-45所示,圆盘某瞬时以角速度ω,角加速度α绕轴O转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R, OB = R/2,则aA与aB,θ与 φ 的关系分别为( )。 A.aA=aB θ=φ B.aA=aB θ=2φ C.aA=2aB θ=φ D.aA=2aB θ=2φ

考题 一飞轮以匀角速度转动,它边缘上一点的加速度情况为()。A、无切向加速度,无法向加速度B、有切向加速度,无法向加速度C、无切向加速度,有法向加速度D、有切向加速度,有法向加速度

考题 一质点P沿半径R的圆周作匀速率运动,运动一周所用时间为T,则质点切向加速度的大小为();法向加速度的大小为()

考题 刚体以角速度ω,角加速度ε绕定轴转动则在其转动半径为r处的线速度v=(),切线加速度at=(),法向加速度an=()。

考题 填空题刚体以角速度ω,角加速度ε绕定轴转动则在其转动半径为r处的线速度v=(),切线加速度at=(),法向加速度an=()。

考题 单选题某瞬时刚体的转动方向是指()。A 瞬时角速度方向B 瞬时角加速度方向C 切向加速度方向D 法向加速度方向