网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
椭圆x2/a2+y2/b2=1(a>b>0)绕x轴旋转得到的旋转体体积V1与绕y轴旋转得到的旋转体体积V2之间的关系为:
A.V1>V2 B.V1﹤V2 C.V1=V2 D.V1=3V2


参考答案

参考解析
解析:提示:画出椭圆,分别计算该图形绕x轴、y轴旋转体的体积,通过计算V1=(4/3)ab2 ,V2 =(4/3)a2b,再比较大小。计算如下:
更多 “椭圆x2/a2+y2/b2=1(a>b>0)绕x轴旋转得到的旋转体体积V1与绕y轴旋转得到的旋转体体积V2之间的关系为: A.V1>V2 B.V1﹤V2 C.V1=V2 D.V1=3V2” 相关考题
考题 曲线:与直线围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:

考题 由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:

考题 椭圆绕x轴旋转得到的旋转体体积V1与绕y轴旋转得到的旋转体体积V2之间的关系为: A.V1>V2 B.V12 C.V1=V2 D.V1=3V2

考题 曲线y =-ex(x≥0)与直线x= 0,y = 0所围图形绕Ox轴旋转所得旋转体的体积为:A.π/2 B.π C.π/3 D.π/4

考题 直线H/Rx(x≥0)与及y轴所围图形绕y轴旋转一周所得旋转体的体积为(H,R为任意常数):

考题 直线与y=H及y轴所围图形绕y轴旋转一周所得旋转体的体积为:(H,R为任意常数)

考题 ①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S; ②求①中的平面图形绕x轴旋转一周所得旋转体的体积V.

考题 ①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S: ②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.

考题 (1)求D的面积S; (2)求D绕y轴旋转一周所得旋转体的体积V.

考题 ①求曲线y=ex及直线x=1,x=0,y=0所围成的图形D的面积S: ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.

考题 求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

考题 设区域D={(x,y)(0≤y≤x2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()

考题 ①求在区间(0,π)上的曲线y=sinx与x轴所围成图形的面积S; ②求①中的平面图形绕x轴旋转一周所得旋转体的体积Vx.

考题 已知圆, 其中, 求此圆绕y轴旋转所构成的旋转体体积和表面积.

考题 设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

考题 (1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.

考题 曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成的平面图形绕x轴旋转产生的旋转体体积是()。

考题 曲线y=e-x (x≥0)与直线x=0,y=0所围图形绕ox轴旋转一周所得旋转体的体积为( )。 A. π/2 B. π C. π/3 D. π/4

考题 求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?

考题 设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

考题 (1)求曲线y=f(x); (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.

考题 曲线y=sinx(0≤x≤π/2)与直线x=π/2,y=0围成一个平面图形。此平面图形绕x轴旋转产生的旋转体的体积是:()A、π2/4B、π/2C、π2/4+1D、π/2+1

考题 由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()A、(293/60)πB、π/60C、4π2D、5π

考题 在[0,1]上,直线y=3x绕X轴旋转而得的旋转体的体积是()。A、3πB、9πC、π/3D、π/9

考题 由曲线与直线x=1及x轴所围图形绕y轴旋转而成的旋转体的体积是().A、3/7πB、4/7πC、π/2D、π

考题 单选题在[0,1]上,直线y=3x绕X轴旋转而得的旋转体的体积是()。A 3πB 9πC π/3D π/9

考题 单选题由曲线与直线x=1及x轴所围图形绕y轴旋转而成的旋转体的体积是().A 3/7πB 4/7πC π/2D π