网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.


参考答案

参考解析
解析:
更多 “证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.” 相关考题
考题 若A,B,C,为同阶矩阵,且A可逆,则____。 A.若AB=AC,则B=CB.若AB=CB,则A=CC.若AB=0,则B=0D.若BC=0,则B=0

考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 若矩阵A可逆,则AB与BA相似。() 此题为判断题(对,错)。

考题 设A、B为同阶可逆矩阵,则下列正确的说法是()。 A.A+B可逆B.A-B可逆C.A+B与A-B可逆D.AB可逆

考题 设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0

考题 设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆 B.若A,B可逆,则AB可逆 C.若A+B可逆,则A-B可逆 D.若A+B可逆,则A,B都可逆

考题 设A,B为同阶可逆矩阵,则( )。A.AB=BA B. C. D.存在可逆矩阵P和Q,使PAQ=B

考题 设A、B都是n阶方阵,下面结论正确的是A.若A、B均可逆,则A+B可逆. B.若A、B均可逆,则AB可逆. C.若A+B可逆,则A-B可逆. D.若A+B可逆,则A,B均可逆.

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 设A是3阶可逆矩阵,交换A的1,2行得B,则

考题 设A,B是n阶方阵,下列命题正确的是( ).A.若A,B都是可逆阵,则A+B也是可逆阵 B.若A+B是可逆阵,则A、B中至少有一个是可逆阵 C.若AB不是可逆阵,则A、B也都不是可逆阵 D.

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=O B.A=E C.若A不可逆,则A=O D.若A可逆,则A=E

考题 设A、B为同阶可逆矩阵,则

考题 设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵, 若矩阵Q=(a1,a2,a3),则Q-1AQ=

考题 设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。

考题 设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 证明:若矩阵A可逆,则其逆矩阵必然唯一.

考题 设α为n维单位列向量,E为n阶单位矩阵,则 A.AE-AA^T不可逆 B.E+AA^T不可逆 C.E+2AA^T不可逆 D.E-2AA^T不可逆

考题 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆 B.E-A不可逆,E+A可逆 C.E-A可逆,E+A可逆 D.E-A可逆,E+A不可逆

考题 设A,B为三阶矩阵且A不可逆,又AB+2B=O 且r(B)=2,则 |A+4E|=A.8 B.16 C.2 D.0

考题 设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆 B.E—A不可逆。E+A可逆 C.E—A可逆。E+A可逆 D.E—A可逆。E十A不可逆

考题 设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

考题 设A,B是n阶方阵,下列命题正确的是().A、若A,B都是可逆阵,则A+B也是可逆阵B、若A+B是可逆阵,则A、B中至少有一个是可逆阵C、若AB不是可逆阵,则A、B也都不是可逆阵D、若ATA=E,则

考题 判断下列命题是否正确。 (1)若z∈C,则z2≥0; (2)若z1,z2∈C,且z1-z20,则z1z2; (3)若ab,则a+ib+i。

考题 单选题设A,B是n阶方阵,下列命题正确的是().A 若A,B都是可逆阵,则A+B也是可逆阵B 若A+B是可逆阵,则A、B中至少有一个是可逆阵C 若AB不是可逆阵,则A、B也都不是可逆阵D 若ATA=E,则