网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.


参考答案

参考解析
解析:【解】化简矩阵方程,有AX(A-B)+BX(B-A)=E,即(A-B)X(A-B)=E.
由于,所以矩阵A-B可逆,且于是.
更多 “已知矩阵.,且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是三阶单位矩阵,求X.” 相关考题
考题 教材分析使用的()。 A、可达矩阵B、单位矩阵C、加法矩阵D、零矩阵

考题 常用的特殊矩阵有哪些()。 A、单位矩阵B、零矩阵C、对角矩阵D、空矩阵

考题 n阶方阵A,B,C满足ABC=E,其中E为单位矩阵,则必有( ).A.ACB=E B.CBA=E C.BAC=E D.BCA=E

考题 已知,P为三阶非零矩阵,且,则

考题 与n阶单位矩阵E相似的矩阵是 A. B.对角矩阵D(主对角元素不为1) C.单位矩阵E D.任意n阶矩阵A

考题 设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( ) A.r(A)=r(B)=m B.r(A)=m r(B)=n C.r(A)=n r(B)=m D.r(A)=r(B)=n

考题 已知4阶矩阵A~B,A的特征值为3,4,5,6,E为4阶单位矩阵,则|B-E|=( )A.20 B.60 C.120 D.360

考题 已知,求作可s逆矩阵P,使得是对角矩阵。

考题 已知AX=B有解 (I)求常数a,b. (II) 求X.

考题 设AX=A+2X,其中A=,求X.

考题 设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

考题 设矩阵,矩阵X满足,其中是A的伴随矩阵,求X.

考题 若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 求与可交换的全体三阶矩阵.

考题 设A,B为三阶矩阵,且满足方程.若矩阵,求矩阵B.

考题 已知矩阵,且矩阵X满足.求X.

考题 设,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B

考题 已知矩阵A=与B=相似.   (Ⅰ)求x,y;   (Ⅱ)求可逆矩阵P使得P^-1AP=B.

考题 设A=,E为三阶单位矩阵.   (Ⅰ)求方程组Ax=0的一个基础解系;   (Ⅱ)求满足AB=E的所有矩阵B.

考题 已知a是常数,且矩阵可经初等列变换化为矩阵.   (Ⅰ)求a;   (Ⅱ)求满足AP=B的可逆矩阵P.

考题 设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 已知二次型f(x1,x2,3x)=x^TAx在正交变换x=Qy下的标准形为,且Q的第3列为.   (Ⅰ)求矩阵A;   (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵.

考题 三阶矩阵 为矩阵A的转置,已知r(ATA)=2,且二次型 (1)求a; (2)求二次型对应的二次矩阵,并将二次型化为标准型,写出正交变换过程。

考题 填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

考题 问答题设A是n阶矩阵,且满足Am=E,其中m为整数,E为n阶单位矩阵。令将A中的元素aij换成它的代数余子式Aij而成的矩阵为A(~),证明:(A(~))m=E。