网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).


参考答案

参考解析
解析:本题是2001年数三的考题,考查两个随机变量函数的分布和均匀分布.
更多 “设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).” 相关考题
考题 设随机变量X服从正态分布N(2,4),Y服从均匀分布U(3,5),则E(2X-3Y)= __________.

考题 设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.

考题 设二维随机变量(X,Y)的联合密度函数为f(x,y)=   (1)求随机变量X,Y的边缘密度函数;   (2)判断随机变量X,Y是否相互独立;   (3)求随机变量Z=X+2Y的分布函数和密度函数.

考题 设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

考题 设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数

考题 设随机变量(X,Y)的联合密度为f(x,y)=求:   (1)X,Y的边缘密度;(2)P

考题 设随机变量X,Y不相关,X~U(-3,3),Y的密度为根据切比雪夫不等式,有P{|X-Y|

考题 设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

考题 设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.   (Ⅰ)求X的概率密度fx(x);   (Ⅱ)求条件概率密度.

考题 设随机变量X和Y相互独立,且分布函数为Fx(x)=,Fy(y)=,令U=X+Y,则U的分布函数为_______.

考题 设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

考题 设随机变量X,Y相互独立且都服从标准正态分布,令U=X^2+Y^2.求:   (1)(u);(2)P{U>D(U)|U>E(U)}.

考题 设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;   (2)求y的边缘密度函数.

考题 设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令   U=,V=.   (1)求(U,V)的联合分布;(2)求.

考题 设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.   设随机变量U=max{X,Y},V=min{X,Y}.   (1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;   (3)判断U,V是否相互独立?(4)求P(U=V).

考题 设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;   (Ⅱ)Y的概率密度;   (Ⅲ)概率P{X+Y>1}.

考题 设二维离散型随机变量(X,Y)的概率分布为      (Ⅰ)求P{X=2Y);   (Ⅱ)求Cov(X-Y,Y).

考题 设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).   (Ⅰ)求Y的分布函数FY(y);   (Ⅱ)求EY.

考题 设随机变量X的概率密度为令随机变量,   (Ⅰ)求Y的分布函数;   (Ⅱ)求概率P{X≤Y}.

考题 设二维随机变量(X,Y)在区域上服从均匀分布,令   (Ⅰ)写出(X,Y)的概率密度;   (Ⅱ)请问U与X是否相互独立?并说明理由;   (Ⅲ)求Z=U+X的分布函数F(z).

考题 设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为   (Ⅰ)求P{Y≤EY};   (Ⅱ)求Z=X+Y的概率密度.

考题 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V也( )。《》( )A.不独立; B.独立; C.相关系数不为零; D.相关系数为零。

考题 设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。A、X2B、X+YC、(X,Y)D、X-Y

考题 设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()

考题 设随机变量X的概率密度为fX(x),随机变量Y的概率密度为fY(y),则二维随机变量(X、Y)的联合概率密度为fX(x)fY(y)。

考题 问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

考题 问答题设随机变量(X,Y)的概率密度为   求:(1)系数k.   (2)边缘概率密度fX(x),fY(y).   (3)P{X+Y1}.