网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
(1)求出图象与戈轴的交点A,B的坐标;
存在,请说明理由;
° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
(1)求出图象与戈轴的交点A,B的坐标;
存在,请说明理由;
° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.
参考答案
参考解析
解析:解:(1)由二次函数Y=(x+m)2+k的顶点坐标为M(1,-4)可知,m=-1,k=-4.则二次函数Y=(x-1)2-4与x轴的交点为A(-1,0),8(3,0).
(3)如图,当直线Y=x+b经过A(-1,0)时-1+b=0,
可得b=1,又因为b<1,
故可知Y=x+b在Y=x+1的下方,
当直线Y=x+b经过点B(3,0)时,3+b=0,则b=-3,
由图可知,b的取值范围为-3<b<1时,
直线Y=x+b(b<1)与此图象有两个公共点.
(3)如图,当直线Y=x+b经过A(-1,0)时-1+b=0,
可得b=1,又因为b<1,
故可知Y=x+b在Y=x+1的下方,
当直线Y=x+b经过点B(3,0)时,3+b=0,则b=-3,
由图可知,b的取值范围为-3<b<1时,
直线Y=x+b(b<1)与此图象有两个公共点.
更多 “下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围. ” 相关考题
考题
作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。
考题
在同一直角坐标系内一次作出函数y=x+1,y=2x+1,y=3x+1的图象。(1)这几个图象之间有什么差别,又有什么联系?(2)一次函数y=kx+b的一次项系数k对函数的图象有什么影响?
考题
根据二次函数图象上三个点的坐标,求出函数解析式:(1)(-1,3)(1,3)(2,6);(2) (-1,-1)(0,-2)(1,1);(3) (-1,0)(3,0)(1,-5);(4) (1,2)(3,0)(-2,20)。
考题
11 、点 A ( 2 , y 1 ) 、 B ( 3 , y 2 )是二次函数 y=x 2- 2x+1 的图象上两点,则 y 1 与 y 2 的大小关系为 y 1 _________ y 2 (填 “ > ” 、 “ < ” 、 “ = ” ) .
考题
已知一次函数的图象经过点A(2,1),B(-1,-3)(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积。
考题
A.常数k<-1
B.函数f(x)在定义域范围内,y随着x的增大而减小
C.若点C(-1,m),点B(2,n),在函数f(x)的图象上,则m<n
D.函数f(x)图象对称轴的直线方程是y=x
考题
定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)};
②当m>0时,函数图象截石轴所得的线段长度大于3/2;
③当m1/4时,y随x的增大而减小;
④当m≠0时,函数图象经过同一个点。
其中正确的结论有()。
A.②③④
B.①②④
C.③④
D.②④
考题
初中数学《二次函数的图象与性质》
一、考题回顾
题目来源:5月18日 上午 湖北省黄石市 面试考题
试讲题目
1.题目:二次函数的图象与性质
2.内容:
3.基本要求:
(1)掌握五点作图法的画图方法,能根据图象理解二次函数的性质;
(2)试讲十分钟;
(3)要有合适的板书。
答辩题目
1.二次函数 的顶点坐标如何表示?
2.确定二次函数的表达式需要几个条件?
考题
多媒体计算机处理图象和视频,首先必须将连续的图象函数f(x,y)进行空间和幅值的离散化处理,空间连续坐标(x,y)的离散化,叫做();f(x,y)颜色的离散化,称之为()。两种离散化结合在一起,叫做()。
考题
填空题多媒体计算机处理图象和视频,首先必须将连续的图象函数f(x,y)进行空间和幅值的离散化处理,空间连续坐标(x,y)的离散化,叫做();f(x,y)颜色的离散化,称之为()。两种离散化结合在一起,叫做()。
热门标签
最新试卷