网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

已知一次函数的图象经过点A(2,1),B(-1,-3)

(1)求此一次函数的解析式;

(2)求此一次函数的图象与x轴、y轴的交点坐标;

(3)求此一次函数的图象与两坐标轴所围成的三角形面积。


参考答案

更多 “ 已知一次函数的图象经过点A(2,1),B(-1,-3)(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积。 ” 相关考题
考题 若反比例函数的图象经过点A(-2,1) ,则它的表达式是 _________________ .

考题 已知一次函数y-2x+b的图像经过点(-2,1),则该图像也经过点 ( )A.(1,7)B.(1,-3)C.(1,5)D.(1,-l)

考题 作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。

考题 在同一直角坐标系内一次作出函数y=x+1,y=2x+1,y=3x+1的图象。(1)这几个图象之间有什么差别,又有什么联系?(2)一次函数y=kx+b的一次项系数k对函数的图象有什么影响?

考题 根据二次函数图象上三个点的坐标,求出函数解析式:(1)(-1,3)(1,3)(2,6);(2) (-1,-1)(0,-2)(1,1);(3) (-1,0)(3,0)(1,-5);(4) (1,2)(3,0)(-2,20)。

考题 已知函数 y=x²-4x+3。(1)画出函数的图象;(2)观察图象,当x取哪些值时,函数值为0?

考题 用函数的图象求下列方程的解:(1)x²-3x+2=0;(2)-x²-6x-9=0 ;(3)x²+x+2=0; (4)1-x-2x²=0 。

考题 画出函数 y=x²-2x-3的图象,利用图象回答:(1)方程 x²-2x-3=0 的解是什么;(2)x取什么值时,函数值大于0 ;(3)x取什么值时,函数值小于0 。

考题 已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )A.f(x)=4x+3B.f(x)=2x+5C.f(x)=5x+2D.f(x)=3x+5

考题 11 、点 A ( 2 , y 1 ) 、 B ( 3 , y 2 )是二次函数 y=x 2- 2x+1 的图象上两点,则 y 1 与 y 2 的大小关系为 y 1 _________ y 2 (填 “ > ” 、 “ < ” 、 “ = ” ) .

考题 已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= ;

考题 A.常数k<-1 B.函数f(x)在定义域范围内,y随着x的增大而减小 C.若点C(-1,m),点B(2,n),在函数f(x)的图象上,则m<n D.函数f(x)图象对称轴的直线方程是y=x

考题 如图。在直角梯形ABCD中,AB∥CD,∠BAD=90o,且AB=8,AD=3,CD=4,动点P,Q分别以点B和点A为起点同时出发,点P沿B→A,以每秒1个单位速度运动,终点为点A;点Q沿A→D→C→B,以每秒1.5个单位速度运动,终点为点B。设△APQ的面积为y,运动时间为x。 (1)求y关于x的函数解析式y=f(x); (2)画出函数y=f(x)的图象。

考题 已知函数f(x)=㏑(x+2)-x2+bx+c, (1)若点P(-1,0)在f(x)的图象上,过点P的切线与直线y=-x+2平行,求f(x)的解析式; (2)若f(x)在区间[0,2]上单调递增,求b的取值范围。

考题 下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

考题 已知函数f(x)=(1/2)e2x-ax,g(x)=6xlnx,,h(x)=2e2x-4/x,a>o,b≠0。 (1)求函数f(x)的最小值;(3分) (2)求函数g(x)的单调区间;(3分) (3)证明:函数h(x)在[1/2,1]上有且仅有l个零点。(4分)

考题 定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论: ①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)}; ②当m>0时,函数图象截石轴所得的线段长度大于3/2; ③当m1/4时,y随x的增大而减小; ④当m≠0时,函数图象经过同一个点。 其中正确的结论有()。 A.②③④ B.①②④ C.③④ D.②④

考题 已知函数(x)=ax2+b的图像经过点(1,2)且其反函数-1(x)的图像经过点(3,0),则函数(x)的解析式是( ) A. B.(x)=-x2+3 C.(x)=3x2+2 D.(x)=x2+3

考题 【答辩题目解析】 1.说一说你对本节课教材的理解。 2.一次函数图象与x轴交点的意义是什么?

考题 初中数学《二次函数的图象与性质》 一、考题回顾 题目来源:5月18日 上午 湖北省黄石市 面试考题 试讲题目 1.题目:二次函数的图象与性质 2.内容: 3.基本要求: (1)掌握五点作图法的画图方法,能根据图象理解二次函数的性质; (2)试讲十分钟; (3)要有合适的板书。 答辩题目 1.二次函数 的顶点坐标如何表示? 2.确定二次函数的表达式需要几个条件?

考题 函数的图象与x轴交点的个数是( )。A、0 B、1 C、2 D、3

考题 三次函数r=ax3+bx2+cx+d的导函数图象如图1, 则此三次函数的图象是( )。 A. B. C. D.

考题 关于二次函数y=2-(x+1)2的图象,下列说法正确的是( )。 A.图象开口向上 B.图象的对称轴为直线x=1 C.图象有最低点 D.图象的顶点坐标(-1,2)

考题 一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k0;③当xA.0 B.1 C.2 D.3

考题 已知函数f(x)=x2+4lnx. (1)求函数f(x)在[1,e]上的最大值和最小值; (2)证明:当x∈[1,+∞)时,函数八戈)的图象在g(x)=2x3的图象的下方。

考题 已知一次函数的图像过点(3,5)与(-4,-9),则该函数的图像与y轴交点的坐标为(0,-1)。

考题 填空题二次函数y=-x2+2x+n的图象与x轴的一个交点为(3,0),则n=____.