网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
方程x3+2x2-x-2=0在[-3,2]内()

A.有1个实根
B.有2个实根
C.至少有1个实根
D.无实根

参考答案

参考解析
解析:设f(x)=x3+2x2-x-2,x∈[-3,2].因为f(x)在区间[-3,2]上连续,
且f(-3)=-8<0,f(2)=12>0,
由闭区间上连续函数的性质可知,至少存在一点ξ∈(-3,2),使f(ξ)=0.
所以方程在[-3,2]上至少有1个实根.
更多 “方程x3+2x2-x-2=0在[-3,2]内()A.有1个实根 B.有2个实根 C.至少有1个实根 D.无实根” 相关考题
考题 曲线y=lnx在点(1,0)的切线方程是()。

考题 在"inta[][3]={{1},{3,2},{4,5,6},{0}};"中,a[2][2]的值是()。A.1B..0C.6D.2

考题 设f(x)=(x-1)(x-2)(x-3),则方程f′(x)=0在(0,3)内的根的个数为(56)。A.1B.2C.3D.4

考题 在int b[][3]={{1},{3,2};{4,5,6},{0}};中b[2][2]的值是( )。A.0B.5C.6D.2

考题 有以下程序:程序运行后的输出结果是( )。A.1,2B.1,0C.3,2D.0, 0

考题 在回归直线方程y=a+bx中,若a>0,下述正确的是A、b>0B、b 在回归直线方程y=a+bx中,若a>0,下述正确的是A、b>0B、bC、b=0D、b=1E、a的符号和b无关

考题 方程x-lnx-2=0在区间(0,+∞)内( )。A.没有实根 B.只有一个实根 C.有两个相异的实根 D.有两个以上相异实根

考题 图4所示某平面平衡力系作用在平面Oxy内,问下述哪组方程是该力系的独立平衡方程( )。A、∑MA(F)=0,∑MB(F)=0,∑MC(F)=0 B、∑MA(F)=0,∑MB(F)=0,∑Mo(F)=0 C、∑Fx=0,∑Fy=0,∑FAB=0 D、∑MA(F)=0,∑Mo(F)=0,∑Fy=0

考题 若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根 B.至少有一个根 C.没有根 D.以上结论都不对

考题 ( ) ,1,√2,√3,2 A.- √2 B. 0 C. √2/3 D. √3/2

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 曲线在(0,0)处的切线方程为________

考题 如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。

考题 在回归方程中,若回归系数等于0,这表明()

考题 Park变换的作用是将同步发电机在abc坐标下的()的微分方程,变换成在dq0坐标下的()方程。

考题 空间一般力系有∑X=0,∑Y=0,∑Z=0,∑Mx=0,∑My=0,∑Mz=0六个平衡方程,若有一个在xy平面内的平面一般力系,则其平衡方程是()。A、∑X=0,∑Y=0,∑Mx=0B、∑X=0,∑Y=0,∑My=0C、∑X=0,∑Y=0,∑Mz=0D、∑X=0,∑Z=0,∑Mz=0

考题 若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

考题 设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)O,f’(x0)=0,则函数f(x)在点x0().A、取得极大值B、取得极小值C、的某个邻域内单调增加D、的某个邻域内单调减少

考题 单选题设y=f(x)是微分方程y"-2y’+4y=0的一个解,又f(x0)O,f’(x0)=0,则函数f(x)在点x0().A 取得极大值B 取得极小值C 的某个邻域内单调增加D 的某个邻域内单调减少

考题 单选题求方程f(x)=0在区间[0,1]内的根,要求误差不超过10-4,那么二分次数n十1≥( )。A 12B 13C 14D 15

考题 问答题设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

考题 单选题已知r1=3,r2=-3是方程y″+Py′+qy=0(p和q是常数)的特征方程的两个根,则该微分方程是下列中哪个方程?()A y″+9y′=0B y″-9y′=0C y″+9y=0D y″-9y=0

考题 单选题设y=f(x)是满足微分方程y″+y′-esinx=0的解,且f′(x0)=0,则f(x)在(  )。A x0的某个邻域内单调增加B x0的某个邻域内单调减少C x0处取得极小值D x0处取得极大值

考题 单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A 没有实根B 有两个实根C 有无穷多个实根D 有且仅有一个实根

考题 单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).A 曲线C的方程是f(x,y)=0B 以方程f(x,y)=0的解为坐标的点都在曲线C上C 方程f(x,y)=0的曲线是CD 方程f(x,y)=0表示的曲线不一定是C

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 单选题函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。A -x-y=0B x-y-1=0C x-y=0D x+y=0