网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设随机变量X的概率密度与分布函数分别为f(x)与F(x),则下列选项正确的是().

A.0 ≤ f(x) ≤ 1

B.P{X = x } ≤ F(x)

C.P{X = x } = F(x)

D.P{X = x } = f(x)


参考答案和解析
因为 所以 故 $首先求得Y的分布函数 Y的概率密度为 Y的微分熵为 因为己知X,关于Y没有不确定性,常数A不会增加不确定度,所以从熵的概念上也可判断此时 h(Y)=h(X)$首先求得Y的分布函数 Y的概率密度为 Y的微分熵为 (令t=y/2) =h(X)+log2
更多 “设随机变量X的概率密度与分布函数分别为f(x)与F(x),则下列选项正确的是().A.0 ≤ f(x) ≤ 1B.P{X = x } ≤ F(x)C.P{X = x } = F(x)D.P{X = x } = f(x)” 相关考题
考题 设F(x)=P(X≤x)是连续型随机变量X的分布函数,则下列结论中不正确的是A、F(x)是不增函数B、0≤F(x)≤1C、F(x)是右连续的D、F(-∞)=0,F(+∞)=1

考题 设X的概率密度与分布函数分别为f(x)和F(X),则下列选项正确是 ( ) A.P{X=x}=f(x)B.P{X=x}=F(x)C.P{X=x}D.0

考题 设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是( ).A.F(x^2) B.F(-z) C.1-F(x) D.F(2x-1)

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:

考题 设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则(). A.F(z)=F(-x) B.F(x)=F(-x) C.F(X)=F(-x) D.f(x)=f(-x)

考题 设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。A. B. C.F(-a)=F(a) D.F(-a)=2F(a)-1

考题 设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().

考题 设随机变量X,Y相互独立,它们的分布函数为Fx(x),F(y),则Z=min{X,Y}的分布函数为().

考题 设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().

考题 设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。

考题 设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x) B.F(x)F(y) C.1-[1-F(x)]^2 D.[1-F(x)][1-F(y)]

考题 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是 A.Af1(x)f2(x) B.2f2(x)F1(x) C.f1(x)F2(x) D.f1(x)F2(x)+f2(x)f1(x)

考题 设二维随机变量(X,Y)在区域上服从均匀分布,令   (Ⅰ)写出(X,Y)的概率密度;   (Ⅱ)请问U与X是否相互独立?并说明理由;   (Ⅲ)求Z=U+X的分布函数F(z).

考题 设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.

考题 假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布函数,则下列各式中正确的是( )《》( )A.F(x)=F(-x); B.F(x)=-F(-x); C.f(x)=f(-x); D.f(x)=-f(-x).

考题 设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。

考题 已知 X1 和 X2 是相互独立的随机变量,分布函数分别为F1(x)和F2(x),则下列选项一定是某一随机变量分布函数的为( )

考题 若f(x)、F(x)分别为随机变量X的密度函数、分布函数,则( )。A.F(x)=f(x) B.F(x)≥f(x) C.F(x)≤f(x) D.f(x)=-F'(x)

考题 设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A、a=3/5,b=-2/5B、a=2/3,b=2/3C、a=-1/2,b=3/2D、a=1/2,b=-2/3

考题 设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()A、1/2-F(a)B、1/2+F(a)C、2F(a)-1D、1-F(a)

考题 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()A、f1(x)f2(x)B、2f2(x)F1(x)C、f1(x)F2(x)D、f1(x)F2(x)+f2(x)F1(x)

考题 设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]

考题 设F1(x)与F1(x)分别为随机变量X1与X2的分布函数,若函数F(x)=aF1(x)-bF2(x)是某随机变量的分布函数,则必有()A、a=3/5,b=-2/5B、a=-3/5,b=2/5C、a=1/2,b=3/2D、a=1/2,b=-3/2

考题 单选题设F1(x)与F2(x)分别为随机变量X1与X2的分布函数。为使F(x)=aF1(x)-bF2(x)成为某一随机变量的分布函数,则a与b分别是:()A a=3/5,b=-2/5B a=2/3,b=2/3C a=-1/2,b=3/2D a=1/2,b=-2/3

考题 问答题10.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=aF1(x)一bF2(x)也是某一随机变量的分布函数,证明a—b=1.

考题 单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则(  )。A P{X≤0}=P{X≥0}=0.5B f(-x)=1-f(x)C F(x)=-F(-x)D P{X≥2}=P{X<2}=0.5