网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

一元函数在一点导数存在是函数在该点连续的必要条件。


参考答案和解析
错误
更多 “一元函数在一点导数存在是函数在该点连续的必要条件。” 相关考题
考题 函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限。() 此题为判断题(对,错)。

考题 函数在一点的导数就是在一点的微分。() 此题为判断题(对,错)。

考题 函数在某点可导的充要条件是函数在该点的左右导数存在且相等。() 此题为判断题(对,错)。

考题 二元函数f(x,y)在点(x ,y)偏导数存在是f(x,y)在该点连续的() A、充分必要条件B、必要而非充分条件C、充分而非必要条件D、既非充分又非必要条件

考题 函数z=f(x,y)在点(x0,y0)处连续是z=f(x,y)在点(x0,y0)处存在一阶偏导数的(58)。A.充分条件B.必要条件C.充要条件D.既非充分,又非必要条件

考题 下列结论正确的是( ).A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件 B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件 C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件 D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

考题 函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。 A、必要条件 B、充分条件 C、充分必要条件 D、既非充分又非必要条件

考题 设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y) B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y) C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y) D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

考题 函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。 A. 必要条件 B. 充分条件 C. 充分必要条件 D. 既非充分条件也非必要条件

考题 z=f(x,y)在一阶偏导数存在是该函数在此点可微的什么条件? A.必要条件 B.充分条件 C.充要条件 D.无关条件

考题 函数在x点的导数是:

考题 函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()A.必要条件 B.充分条件 C.既非必要又非充分条件 D.充要条件

考题 A.两个偏导数存在,函数不连续 B.两个偏导数不存在,函数连续 C.两个偏导数存在,函数也连续,但函数不可微 D.可微

考题 函数y=f(x)在点xo处的左、右极限存在且相等是函数在该点极限存在的( ).《》( )A.必要条件 B.充分条件 C.充分必要条件 D.既非充分条件,也非必要条件

考题 对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A、必要条件而非充分条件B、充分条件而非必要条件C、充分必要条件D、既非充分又非必要条件

考题 函数在某一点处的导数是一种无穷小比无穷小的极限。

考题 函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。

考题 函数在一点处的导数就是这点处的微分。

考题 函数在一点处的左右极限都存在,则函数在这一点的极限存在。

考题 若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A、解析B、可导C、可分D、可积

考题 下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

考题 判断题函数在一点处的导数就是这点处的微分。A 对B 错

考题 单选题若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A 解析B 可导C 可分D 可积

考题 单选题对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A 必要条件而非充分条件B 充分条件而非必要条件C 充分必要条件D 既非充分又非必要条件

考题 单选题二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。A 充分条件B 必要条件C 充要条件D 以上都不是

考题 判断题函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。A 对B 错

考题 单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。A 只能确定一个具有连续偏导数的隐函数z=z(x,y)B 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

考题 单选题函数 在点 处的一阶偏导数存在是该函数在此点可微分的()。A 必要条件B 充分条件C 充分必要条件D 既非充分条件也非必要条件