网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
若x*是f(x)=0的重根,则牛顿不收敛。
参考答案和解析
B
更多 “若x*是f(x)=0的重根,则牛顿不收敛。” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
下列命题中,哪个是正确的?
A.周期函数f(x)的傅立叶级数收敛于f(x)
B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)
C.若正项级数收敛,则必收敛
D.正项级数收敛的充分且必-条件是级数的部分和数列有界
考题
下列命题正确的是().
A若|f(x)|在x=a处连续,则f(x)在x=a处连续
B若f(x)在x=a处连续,则|f(x)|在x=a处连续
C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续
D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续
考题
若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0
B.f′(x)<0,f″(x)>0
C.f′(x)>0,f″(x)<0
D.f′(x)>0,f″(x)>0
考题
下列命题中,哪个是正确的?
A.周期函数f(x)的傅立叶级数收敛于f (x)
B.若f(x)有任意阶导数,则f(x)的泰勒级数收敛于f(x)
D.正项级数收敛的充分且“条件是级数的部分和数列有界
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0
B.若f'(xo)=0,则点xo必为f(x)的极值点
C.若f'(xo)≠0,则点xo必定不为f(x)的极值点
D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0
考题
用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A、f(x0)f″(x)0B、f(x0)f′(x)0C、f(x0)f″(x)0D、f(x0)f′(x)0
考题
若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对
考题
单选题用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A
f(x0)f″(x)0B
f(x0)f′(x)0C
f(x0)f″(x)0D
f(x0)f′(x)0
考题
单选题设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )。A
若fx′(x0,y0)=0,则fy′(x0,y0)=0B
若fx′(x0,y0)=0,则fy′(x0,y0)≠0C
若fx′(x0,y0)≠0,则fy′(x0,y0)=0D
若fx′(x0,y0)≠0,则fy′(x0,y0)≠0
考题
单选题下列说法中正确的是( )。[2014年真题]A
若f′(x0)=0,则f(x0)必须是f(x)的极值B
若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
考题
单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是( )。[2013年真题]A
f′(x)>0,f″(x)<0B
f′(x)<0,f″(x)>0C
f′(x)>0,f″(x)>0D
f′(x)<0,f″(x)<0
考题
单选题设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( )。A
若{xn}收敛,则{f(xn)}收敛B
若{xn}单调,则{f(xn)}收敛C
若{f(xn)}收敛,则{xn}收敛D
若{f(xn)}单调,则{xn}收敛
考题
单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
考题
单选题设求方程f(x)=0的根的牛顿法收敛,则它具有()敛速。A
超线性B
平方C
线性D
三次
热门标签
最新试卷