网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

129、若矩阵等式AX=AY,且A不等于零矩阵,则X=Y.


参考答案和解析
D
更多 “129、若矩阵等式AX=AY,且A不等于零矩阵,则X=Y.” 相关考题
考题 下列结论或等式正确的是()。 A.若A,B均为零矩阵,则有A=BB.矩阵乘法满足交换律,则(AB)k=AkBkC.对角矩阵是对称矩阵D.若A≠0,B≠0,则AB≠0

考题 设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

考题 下列( )是伪传递规则。A.若X→Y, 且X→Z, 则X→YZB.若X→Y, 且AY→Z, 则XA→ZC.若X→Y, 且Z→Y, 则X→YD.若X→Y, 且Y→Z, 则X→Z

考题 设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

考题 若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

考题 设,B是三阶非零矩阵,且,则().

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ). A.①③ B.②④ C.②③ D.③④

考题 设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解 B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解 C.若方程组AX=b无解,则方程组AX=0一定有非零解 D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

考题 设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关 BA的任意m阶子式都不等于零 C非齐次线性方程组AX=b一定有无穷多个解 D矩阵A通过初等行变换一定可以化为

考题 已知3阶矩阵A的第一行是不全为零,矩阵 (k为常数),且AB=0, 求线性方程组Ax=0的通解

考题 设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

考题 若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=_______.

考题 设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.

考题 设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

考题 设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

考题 对于所有非零向量X,若XTMX0,则二次矩阵M是()。A、三角矩阵B、负定矩阵C、正定矩阵D、非对称矩阵E、对称矩阵

考题 填空题设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为____.

考题 多选题对于所有非零向量X,若XTMX0,则二次矩阵M是()。A三角矩阵B负定矩阵C正定矩阵D非对称矩阵E对称矩阵

考题 单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是(  )。A 若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B 若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解

考题 单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。A A*X(→)=0(→)的解均是AX(→)=0(→)的解B AX(→)=0(→)的解均是A*X(→)=0(→)的解C AX(→)=0(→)与A*X(→)=0(→)无非零公共解D AX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解

考题 问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。