网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

1、若二维随机变量(X, Y)的分布函数为F(x, y),则关于边缘分布函数的求解正确的是

A.F(x, +∞)=FX(x)

B.F(x, -∞)=FX(x)

C.F(∞, x)=FX(x)

D.F(-∞, x)=FX(x)


参考答案和解析
F(x, y)=F(x, y+0);固定 y , F(-∞, y)=0;y1 时, F(x, y1)≤F(x, y2)
更多 “1、若二维随机变量(X, Y)的分布函数为F(x, y),则关于边缘分布函数的求解正确的是A.F(x, +∞)=FX(x)B.F(x, -∞)=FX(x)C.F(∞, x)=FX(x)D.F(-∞, x)=FX(x)” 相关考题
考题 X,Y的分布函数为F(X,Y),则F(X,-∞)=()。 A、+∞B、-∞C、0D、无法确定

考题 设平面区域D由曲线y=1/x及直线y=0,x=1,x=е2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)的联合密度函数为()。

考题 若函数y=f(x)是一随机变量的概率密度,则()一定成立。 A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续

考题 设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:() A、0;B、1;C、Y的分布函数;D、Y的密度函数。

考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 下列关于部分函数依赖的叙述中,( )是正确的?A)若X→Y,且存在Y的真子集Y ’,X→Y ',则称Y对x部分函数依赖B)若X→Y,且存在Y的真子集Y‘,X→Y ',则称Y对x部分函数依赖C)若X→Y,且存在X的真子集X',X'→Y,则称Y对x部分函数依赖D)若X→Y,且存在X的真子集X',X'→Y,则称Y对x部分函数依赖

考题 设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是( ).A.F(x^2) B.F(-z) C.1-F(x) D.F(2x-1)

考题 设随机变量X和Y都服从正态分布,则().A.X+Y一定服从正态分布 B.(X,Y)一定服从二维正态分布 C.X与Y不相关,则X,Y相互独立 D.若X与Y相互独立,则X-Y服从正态分布

考题 设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(-XA.1-F(-a,y) B.1-F(-a,y-0) C.F(+∞,y-0)-F(-a,y-0) D.F(+∞,y)-F(-a,y)

考题 设随机变量X,Y相互独立,它们的分布函数为Fx(x),F(y),则Z=min{X,Y}的分布函数为().

考题 设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().

考题 设随机变量X,Y相互独立,它们的分布函数为Fx(x),FY(y),则Z=max{X,Y)的分布函数为().

考题 设二维随机变量(X,Y)的联合密度函数为f(x,y)=   (1)求随机变量X,Y的边缘密度函数;   (2)判断随机变量X,Y是否相互独立;   (3)求随机变量Z=X+2Y的分布函数和密度函数.

考题 设(X,Y)的联合分布函数为F(x,y)=则P(max{X,y}>1)=_______.

考题 设离散型随机变量x的分布函数为 则Y=X^2+1的分布函数为_______.

考题 设随机变量X和Y相互独立,且分布函数为Fx(x)=,Fy(y)=,令U=X+Y,则U的分布函数为_______.

考题 设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=_______,P(X>Y)=_______.

考题 设X的分布函数为F(x)=且Y=X^2-1,则E(XY)=_______.

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x) B.F(x)F(y) C.1-[1-F(x)]^2 D.[1-F(x)][1-F(y)]

考题 设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).   (Ⅰ)求Y的分布函数FY(y);   (Ⅱ)求EY.

考题 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为 A.A0 B.1 C.2 D.3

考题 设二维随机变量(X,Y)在区域上服从均匀分布,令   (Ⅰ)写出(X,Y)的概率密度;   (Ⅱ)请问U与X是否相互独立?并说明理由;   (Ⅲ)求Z=U+X的分布函数F(z).

考题 设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π

考题 假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布函数,则下列各式中正确的是( )《》( )A.F(x)=F(-x); B.F(x)=-F(-x); C.f(x)=f(-x); D.f(x)=-f(-x).

考题 设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()

考题 设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]

考题 单选题设X,Y是相互独立的随机变量,其分布函数分别为FX(x)、FY(y),则Z=min(X,Y)的分布函数是(  )。A FZ(z)=max[FX(x),FY(y)]B FZ(z)=min[FX(x),FY(y)]C FZ(z)=1-[1-FX(x)][1+FY(y)]D FZ(z)=FY(y)

考题 单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。A F2(x)B F(x)F(y)C 1-[1-F(x)]2D [1-F(x)][1-F(y)]