网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

若A与B均为n阶不可逆矩阵,则______

A.A+B是不可逆矩阵

B.A+B是可逆矩阵

C.AB是可逆矩阵

D.AB是不可逆矩阵


参考答案和解析
AB是不可逆矩阵
更多 “若A与B均为n阶不可逆矩阵,则______A.A+B是不可逆矩阵B.A+B是可逆矩阵C.AB是可逆矩阵D.AB是不可逆矩阵” 相关考题
考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。

考题 设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。

考题 设A为n阶可逆矩阵,则下面各式恒正确的是( ).

考题 设A,B为n阶矩阵,则下列结论正确的是().A.若A,B可逆,则A+B可逆 B.若A,B可逆,则AB可逆 C.若A+B可逆,则A-B可逆 D.若A+B可逆,则A,B都可逆

考题 设A,B为n阶可逆矩阵,则().

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= A.E B.-E C.A D.-A

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=O B.A=E C.若A不可逆,则A=O D.若A可逆,则A=E

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则 A.AE-A不可逆,E+A不可逆 B.E-A不可逆,E+A可逆 C.E-A可逆,E+A可逆 D.E-A可逆,E+A不可逆

考题 设A和B均为n阶矩阵,则必有( )。《》( )

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 均为n阶可逆矩阵,则=( )。 A. B.A+B C. D.

考题 设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆 B.E—A不可逆。E+A可逆 C.E—A可逆。E+A可逆 D.E—A可逆。E十A不可逆

考题 若M、N均为n阶矩阵,则必有( )。 A、|M+N|=|M|+|N| B、|MN|=|NM| C、(MN)′=M′N′ D、(M+N)2=M2+2MN+N2

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 设A,N,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)=()。A、A-1+B-1B、A+BC、C.A(A+-1BD、D.(A+-1

考题 若一个n阶矩阵A中的元素满足:Aij=Aji(0=I,j=n-1)则称A为()矩阵;若主对角线上方(或下方)的所有元素均为零时,称该矩阵为()。

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*