网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
函数的图象与x轴交点的个数是( )。

A、0
B、1
C、2
D、3

参考答案

参考解析
解析:f(x)的图象与x轴有且只有一个交点。故选B。
更多 “函数的图象与x轴交点的个数是( )。A、0 B、1 C、2 D、3 ” 相关考题
考题 作出函数y=3-2x的图象,根据图象回答下列问题:(1)y的值随着x值增大而__________;(2)图象与x轴的交点坐标是_________________,与y轴的交点坐标是_______________;(3)当x__________时,y>0 。

考题 在同一直角坐标系内一次作出函数y=x+1,y=2x+1,y=3x+1的图象。(1)这几个图象之间有什么差别,又有什么联系?(2)一次函数y=kx+b的一次项系数k对函数的图象有什么影响?

考题 已知函数 y=x²-4x+3。(1)画出函数的图象;(2)观察图象,当x取哪些值时,函数值为0?

考题 画出函数 y=x²-2x-3的图象,利用图象回答:(1)方程 x²-2x-3=0 的解是什么;(2)x取什么值时,函数值大于0 ;(3)x取什么值时,函数值小于0 。

考题 已知一次函数的图象经过点A(2,1),B(-1,-3)(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积。

考题 A.常数k<-1 B.函数f(x)在定义域范围内,y随着x的增大而减小 C.若点C(-1,m),点B(2,n),在函数f(x)的图象上,则m<n D.函数f(x)图象对称轴的直线方程是y=x

考题 当a≠0时,函数y=ax+1与y=a/x在同一坐标中图象可能是()。

考题 函数f(x)=2sin3x的图象按向量a平移后得到的图象与g(x)=2cos3x的图象重合,则向量a可以是A.(-π/2,0) B.(π/2,0) C.(-π/6,0) D.(π/6,0)

考题 下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4). (1)求出图象与戈轴的交点A,B的坐标; 存在,请说明理由; ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

考题 已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.

考题 下列函数图象与y=f(x)的图象关于原点对称的是(  )A.y=-f(x) B.y=f(-x) C.y=-f(-x) D.y=|f(x)|

考题 函数y=2x-2的图象与坐标轴的交点共有__________个.

考题 求函数与的交点个数

考题 【答辩题目解析】 1.说一说你对本节课教材的理解。 2.一次函数图象与x轴交点的意义是什么?

考题 设χ=α是代数方程f(χ)=0的根,则下列结论不正确的是( )。 A、χ-α是f(χ)的因式 B、χ-α整除f(χ) C、(α,0)是函数y=f(χ)的图象与χ轴的交点 D、f′(α)=O

考题 案例: 某教师关于“反比例函数图象”教学过程中的三个步骤为: 第一步:复习回顾 提出问题:我们已经学过一次函数的哪些内容 是如何研究的 第二步:引入新课。 提出问题:反比例函数的图象是什么形状呢 引导学生利用描点法画出y=1/2的图象。 列表: 描点: 连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于X,Y都不能为0,所以函数图象与X轴、Y轴不能有交点(如下图) ……(第三步过程省略) (1)该教学过程的主要特点是什么 (8分) (2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线(6分) (3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化 (6分)

考题 设x=a是代数方程f(x)=0的根,则下列结论不正确的是( )。 A、 叫是f(x)的因式 B、X-a整除f(x) C、(a,0)是函数y=f(x)的图象与2轴的交点 D、 f(a)=0

考题 某教师关于“反比例函数图象”教学过程中的三个步骤为: 第一步:复习回顾 提出问题:我们已经学过一次函数的哪些内容?是如何研究的? 第二步:引入新课。 提出问题:反比例函数的图形是什么形状呢? 引导学生利用描点法画出y=1/x的图象。 列表: 描点: 连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于x,y都不能为0,所以函数图象与x轴、y轴不能有交点(如下图) ……(第三步过程省略) (1)该教学过程的主要特点是什么? (2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线 (3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化?

考题 关于二次函数y=2-(x+1)2的图象,下列说法正确的是( )。 A.图象开口向上 B.图象的对称轴为直线x=1 C.图象有最低点 D.图象的顶点坐标(-1,2)

考题 由函数y=ex的图象与y=-2x,x=1,x=3所围成的封闭面积为_______。

考题 已知函数f(x)=x2+4lnx. (1)求函数f(x)在[1,e]上的最大值和最小值; (2)证明:当x∈[1,+∞)时,函数八戈)的图象在g(x)=2x3的图象的下方。

考题 已知函数 (x)=sin(ωx+φ)(ω>0)的图象如下图所示,则ω=(  )。

考题 用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A、y=φ(x)与x轴交点的横坐标B、y=x与y=φ(x)交点的横坐标C、y=x与x轴的交点的横坐标D、y=x与y=φ(x)的交点

考题 填空题函数y=x2+(m+2)x+m+5与x轴的正半轴有两个交点,则m的取值范围是____.

考题 填空题二次函数的图像与x轴交点横坐标为-2和1,且通过点(2,4),则其函数解析式为____.

考题 填空题二次函数y=-x2+2x+n的图象与x轴的一个交点为(3,0),则n=____.

考题 单选题如果a,b,c成等比数列,那么函数f(x)=ax2+bx+c的图像与x轴的交点个数是(  ).A 0个B 恰有一个C 2个D 不能确定