网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。
A、当λ≠0时,Ma垂直于a
B、当λ>0时,Ma与a方向相反
C、当λ<0时,Ma与a方向相反
D、向量Ma与a共线
B、当λ>0时,Ma与a方向相反
C、当λ<0时,Ma与a方向相反
D、向量Ma与a共线
参考答案
参考解析
解析:由已知得Ma=Aa,所以Ma与a共线。
更多 “设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。 A、当λ≠0时,Ma垂直于a B、当λ>0时,Ma与a方向相反 C、当λ<0时,Ma与a方向相反 D、向量Ma与a共线 ” 相关考题
考题
设A为n阶实对称矩阵,则().
A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k
考题
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量
考题
设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同
B.矩阵A的特征值都是实数
C.存在可逆矩阵P,使P^-1AP为对角阵
D.存在正交阵Q,使Q^TAQ为对角阵
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A. Pa B. P-1A C. PTa D.(P-1)Ta
考题
已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:
A. β是A的属于特征值0的特征向量
B. α是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. α是A的属于特征值3的特征向量
考题
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta
考题
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则:
A. β是A的属于特征值0的特征向量
B. a是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. a是A的属于特征值3的特征向量
考题
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
考题
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量
考题
单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A
α1-α2是A的属于特征值1的特征向量B
α1-α3是A的属于特征值1的特征向量C
α1-α3是A的属于特征值2的特征向量D
α1+α2+α3是A的属于特征值1的特征向量
考题
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A
α是矩阵-2A的属于特征值-2λ的特征向量B
α是矩阵的属于特征值的特征向量C
α是矩阵A*的属于特征值的特征向量D
α是矩阵AT的属于特征值λ的特征向量
考题
单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A
β是A的属于特征值0的特征向量B
α是A的属于特征值0的特征向量C
β是A的属于特征值3的特征向量D
α是A的属于特征值3的特征向量
考题
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A
PαB
P-1αC
PTαD
(P-1)Tα
热门标签
最新试卷