网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
若A是实对称矩阵,则A的特征值全为实数


参考答案

参考解析
解析:
更多 “若A是实对称矩阵,则A的特征值全为实数” 相关考题
考题 设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)=() A、2B、3C、4D、5

考题 设A是n阶实对称矩阵,则A有n个()特征值.

考题 设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

考题 已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

考题 N阶实对称矩阵A正定的充分必要条件是(). A.A无负特征值 B.A是满秩矩阵 C.A的每个特征值都是单值 D.A^-1是正定矩阵

考题 若A是实对称矩阵,则若|A|>O,则A为正定的

考题 实二次型矩阵A正定的充分必要条件是( )。A.二次型的标准形的n个系数全为正 B.|A|>0 C.矩阵A的特征值为2 D.r(A)=n

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n) B.A的所有特征值非负 C. D.秩(A)=n

考题 设A是实对称矩阵,C是实可逆矩阵,.则( ). A.A与B相似 B.A与B不等价 C.A与B有相同的特征值 D.A与B合同

考题 设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量

考题 若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设A是3阶实对称矩阵,满足,并且r(A)=2. (1) 求A的特征值. (2)当实数k满足什么条件时A+kE正定?

考题 设A为四阶实对称矩阵,且A^2+A=O.若A的秩为3,则A相似于

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。 A、当λ≠0时,Ma垂直于a B、当λ>0时,Ma与a方向相反 C、当λ<0时,Ma与a方向相反 D、向量Ma与a共线

考题 若图的邻接矩阵是对称矩阵,则该图一定是()。

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα