网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,

是μ,σ2的矩估计量,则有( )。



参考答案

参考解析
解析:由矩估计法有解得,因此有
更多 “设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。” 相关考题
考题 设X1,X2,…,Xn是来自总体的样本,且EX=μ,DX=б2则()是μ的无偏估计。

考题 设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。

考题 设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,则有( )。

考题 设X1,X2,…,Xn是来自总体X的样本,,s2分别是样本均值和样本方差,E(X)=μ,D(X)=σ2,则有( )。

考题 设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().

考题 设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,,s2分别是样本均值和样本方差,令,则有( )。A、W~t(n) B、W~t(n-1) C、W~F(n) D、W~F(n-1)

考题 设总体X的概率密度为 未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

考题 设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:

考题 设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:

考题 设总体X的分布函数为      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:   (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.

考题 设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.

考题 设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).

考题 设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.

考题 设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.

考题 设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

考题 设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,   X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

考题 设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.

考题 设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2= ,则E(S^2)=_______.

考题 设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.

考题 设总体X的分布函数为 其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.   (Ⅰ)求EX与EX^2;   (Ⅱ)求θ的最大似然估计量.   (Ⅲ)是否存在实数a,使得对任何ε>0,都有?

考题 设总体X的概率密度为    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本. (Ⅰ)求参数λ的矩估计量; (Ⅱ)求参数λ的最大似然估计量.

考题 设总体X的概率密度为      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.   (Ⅰ)求A;   (Ⅱ)求σ的最大似然估计量.

考题 设总体X的概率密度为      其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.   (Ⅰ)求θ的矩估计量;   (Ⅱ)求θ的最大似然估计量.

考题 设总体X的概率密度为      其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.   (Ⅰ)求θ的矩估计量;   (Ⅱ)求θ的最大似然估计量.

考题 设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。

考题 设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:

考题 设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()

考题 问答题设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.